2009-10-29

ERICSSON

ERLANG/OTP LATEST NEWS

ERLANG USER CONFERENCE 2009
Kenneth Lundin

CONTENTS

> Release plans

> New Build Process for Documentation
> GIT repository

> New erlang.org WEB-site

> Native Implemented Functions (NIFs)

© Ericsson AB 2009 2009-10-29

Ericsson AB 2009 1

Ericsson AB 2009

RELEASE PLANS

Decided

> R13B03 to be released on November 23:rd
Preliminary

> R13B04 in February 2010

> R13BO05 in April 2010

> R14 in June 2010

© Ericsson AB 2009 2009-10-29

NeW WAY TO BUILD DOCUMENTATION

B

> Much faster build

> Easier to maintain and enhance

> Produces MAN, HTML and PDF

> Takes the same XML input as docbuilder

> docbuilder will be phased out

> Makes use of well known Open Source tools:
- xsltproc an xslt processor available on all major platforms
- Apache FOP also available on all major platforms

Additional functionality planned in upcoming releases

search facilities

improved layout.

make doc should work out of the box (to make it easier for users to contribute to the
tools and the documentation)

easy to use for everyone documenting their Erlang modules and applications.
Integration with edoc

new better DTD’s and XMLSchemas

v

v v

v

v

v

© Ericsson AB 2009 2009-10-29

2009-10-29

Ericsson AB 2009

B

OVERVIEW OF DOCUMENTATION BUILD

g -
Wia

Xm l m‘~ :

W3C standard

Freeware Freeware (Apache FOP)

© Ericsson AB 2009 2009-10-29

B

GIT REPOSITORY

> We will put the sources for Erlang/OTP in an official public
GIT repository (probably on GITHUB).

> Will be updated on a daily basis.
> Test suites will also be available in the repository.

> Intention is to make it easier to provide patches and easier
for us to receive patches.

> Will be available from R13B03

© Ericsson AB 2009 2009-10-29

2009-10-29

Ericsson AB 2009

NEW ERLANG.ORG WEB-SITE

> erlang.org with new layout and technology
> Easier to update news and articles

> The goal is to make the
site more alive and up to date.

ERLANG

© Ericsson AB 2009 2009-10-29

NEW ERLANG.ORG WEB-SITE (SNAPSHOT)

.

A
READ ARTICLES

vs articles downloads documentation

ERLANG DOWNLOAD ERLANG/OTP

DOCUMEN‘I

EUC 2009 registration is now open Erlang is a programming language used to build
Writtan by Systam administrater, 2009-10-20 massively scalable soft real-time systems with
requirements on high availability. Some of its uses are in
A_ 'gh::;Ernrgeué;ragg;feﬁence 3 Slckiioin. o Novembor X2 &by telecoms, banking, e-commerce, computer telephony and
AT, P g " instant messaging. Erlang's runtime system has built-in

support for concurrency, distribution and fault tolerance.
orniginally developed at Ericsson, it was released as
open source in 1998,

| A new Frlana hoolk is on its wawvl

© Ericsson AB 2009 2009-10-29

2009-10-29

Ericsson AB 2009

B

NATIVE IMPLEMENTED FUNCTIONS

> New feature (still experimental) for native implementation of functions
(in C)

> Complementing the driver concept.

> Exciting, Really Useful, But dangerous

> We call these functions NIF's (Native Implemented Functions), to
differentiate them from BIF’s (Built-in Functions) which are more or less
part of the language.

> NIFs offer an easier and more efficient way to implement synchronous
functions in C than the driver concept.

> Dynamically loadable and upgradable

> Several functions in a module can be implemented in C using this
technique. Metadata in the module, the on_load attribute, tells the
loader which function to call for loading and initialization of the shared
library containing the NIF’'s

> But as said, really dangerous, use with care!

© Ericsson AB 2009 2009-10-29

B

NATIVE IMPLEMENTED FUNCTIONS (ExAMPLE)

Erlang code

-module (niftest).
-on_load(on_load/0).
-export([reverse_bin/1,calls/0]).

on_load() ->
LibDir = code:priv_dir(myapp),
erlang:load_nif(filename:join([LibDir,”’bin”,”nifs’]).

%% Dummy implementations

reverse bin() ->
erlang:error(not_implemented) .

calls() ->
erlang:error(not_implemented).

© Ericsson AB 2009 2009-10-29

2009-10-29

Ericsson AB 2009

NATIVE IMPLEMENTED FUNCTIONS (ExAmPLE)

C code (initialization)

#include "erl_nif.h*
typedef struct {

int calls;
} PrivData;

data->calls++;

3

static int load(ErINifEnv* env, void** priv_data) {
PrivData* data = enif_alloc(env, sizeof(PrivData));
if (data == NULL) return -1;
data->calls = 0;
*priv_data = data;

return O;

¥

static int reload(ErINifEnv* env, void** priv_data) {
return O;

¥

static void unload(ErINifEnv* env, void* priv_data) {
enif_free(env, priv_data);

© Ericsson AB 2009 2009-10-29

NATIVE IMPLEMENTED FUNCTIONS (ExAMPLE)

B

C code (the NIF implementations)

static ERL_NIF_TERM reverse_bin(ErINifEnv* env, ERL_NIF_TERM al) {
PrivData* data = (PrivData*) enif_get data(env);
ErINifBinary ibin;
ErINifBinary obin;
int i;

data->calls++;
if (Yenif_is_binary(al)) {
return enif_make_ badarg(env);
3
enif_inspect _binary(al, &ibin);
enif_alloc_binary(ibin.size, &obin);
for (i=0; i1 < ibin.size; i++) {
obin.data[i] = ibin.data[ibin.size-i-1]; /* reverse */
s
enif_release_binary(&ibin);
return enif_make_binary(env,&obin);

© Ericsson AB 2009 2009-10-29

2009-10-29

2009-10-29

NATIVE IMPLEMENTED FUNCTIONS (EXAMPLE)

C code (mandatory administration to hook into the Erlang VM)

static ErINifFunc nif_funcs[] =
{
{""reverse_bin", 1, reverse_bin},
{"calls", 0, calls}
175
ERL_NIF_INIT(niftest,nif_funcs, load, reload,unload)

© Ericsson AB 2009 2009-10-29

ERICSSON

Ericsson AB 2009 7

