

Slide title
In CAPITALS

50 pt

Slide subtitle
32 pt

Erlang Multicore support
Behind the scenes

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-282

Erlang VM (BEAM) when we started

 Virtual register machine which scheduled light weight
processes

– One single process scheduler and one queue per priority
level

– Preemptive multitasking based solely on “reductions”
– Switching between I/O operations and process scheduling

 I/O drivers and “built in functions” (native functions) had
exclusive access to the data structures

– Network code
– ETS tables
– Process inspection etc
– Code management

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-283

Perfect program for using multicore

 A lot of small units of execution
 The parallel mindset has created applications just

waiting to be spread over several physical cores

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-284

Conversion steps

 Multiple schedulers
 Parallel I/O
 Parallel memory allocation
 Multiple run-queues and generally less global locking

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-285

Multiple schedulers

 Tools
– Locking order and lock-checker
– Ordinary test cases
– Benchmarks (synthetic)

 Techniques
– Own thread library (Uppsala University)
– Lock tables
– Custom lock implementation for processes
– Lots of conventional mutexes

 Result
– One scheduler per logical core

 Insights
– You will have to make memory/speed tradeoffs
– Lock order enforcement is very helpful

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-286

Parallel I/O

 Tools
– More simple benchmarks
– Customer systems
– Intuition (or – the problem was obvious…)

 Techniques
– More fine granular locking
– Locking on different levels depending on I/O driver implementation
– Scheduling of operations other than process execution

 Result
– Real applications parallel…
– Customer drivers possible to make parallel

 Insight
– Doing things at the right time can vastly reduce complexity

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-287

Multiple allocators

 Tools
– Even more benchmarks
– vTune (Intel)
– Thread profiler (Intel)

 Techniques
– Each scheduler has it’s own instance of memory allocators
– The “malloc” implementation was already our own
– Locks are still needed as one scheduler might free another

schedulers memory
 Result

– Greatly improved performance for CPU intense applications
 Insight

– Not only execution has to be distributed over cores

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-288

Multiple run-queues and generally less
global locking
 Tools

– Custom lock counting implemented
– More massive multicore CPU’s to test on (Tilera, Nehalem)
– More customer code from more projects

 Techniques
– Distributing data over the schedulers
– Load balancing at certain points
– More fine granular locking (ETS Meta- and shared tables)
– Reimplementation of distribution marshaling to remove need for

sequential encode/decode
 Results

– Far better performance on massive multicore systems
– Nehalem performance great, but core2 still problematic

 Insight
– No global lock will ever fail to create a bottleneck

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-289

Example of performance gain w/
multiple run-queues in TilePro64

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2810

Comparing “Clovertown” Xeon E5310
to “Gainstown” Xeon X5570

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

Nehalem
Core

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Nehalem
Core

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2811

Insights
 No global lock ever goes unpunished
 Data as well as execution has to be distributed over cores

– Malloc and friends will be a bottleneck
 You will have to make memory/speed tradeoffs
 New architectures will give you both new challenges and

performance boosts
– Revise and rewrite as processors evolve

 Doing things (in the code) at the right time can reduce
complexity as well as increase performance

 Take the time to use third party tools and to write your own.
 Work incrementally

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2812

Tools we’ve used

 Lock checker (implemented in VM) and strict locking
order

 vTune and thread profiler
 oProfile
 Lock counter (implemented in VM)
 Acumem (www.acumem.com)
 Valgrind
 Benchmarks

– Customers
– Open Source

 Percept (Erlang application parallelism measurement
tool)

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2813

What now?

 Non uniform memory access
– Schedulers private memory near core
– Distribute processes smarter, taking memory access into

account
– …

 Delayed deallocation to avoid allocator lock conflicts
– Especially important for Core systems

 Developing our libraries
 More measuring, benchmarking, customer tests…

Top right
corner for
field-mark,
customer or
partner logotypes.
 See Best
practice for
example.

Slide title
40 pt

Slide subtitle
24 pt

Text
 24 pt

Bullets level 2-5
20 pt

© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2814

