
Refactoring Erlang
with Wrangler

Huiqing Li
Simon Thompson

School of Computing
University of Kent

Overview

Refactoring.

Tools and tool building.

Clone detection.

Refactoring and testing.

Tool demo … Huiqing, George and Simon.

Introduction

Design

Models

Prototypes

Design documents

Visible artifacts

Presenter
Presentation Notes
situation for computing in general … hard for us to do this in a convincing way

All in the code

Functional programs
embody their design
in their code.

Successful programs
evolve … as do their
tests, makefiles etc.

loop(Frequencies) ->

receive

{request, Pid, allocate} ->

{NewFrequencies, Reply} =
allocate(Frequencies, Pid),

reply(Pid, Reply),

loop(NewFrequencies);

{request, Pid , {deallocate, Freq}} ->

NewFrequencies=deallocate(Frequencies,
Freq),

reply(Pid, ok),

loop(NewFrequencies);

{'EXIT', Pid, _Reason} ->

NewFrequencies = exited(Frequencies, Pid),

loop(NewFrequencies);

{request, Pid, stop} ->

reply(Pid, ok)

end.

exited({Free, Allocated}, Pid) ->

case lists:keysearch(Pid,2,Allocated) of

{value,{Freq,Pid}} ->

NewAllocated =
lists:keydelete(Freq,1,Allocated),

{[Freq|Free],NewAllocated};

false ->

{Free,Allocated}

end.

loop(Frequencies) ->

receive

{request, Pid, allocate} ->

{NewFrequencies, Reply} =
allocate(Frequencies, Pid),

reply(Pid, Reply),

loop(NewFrequencies);

{request, Pid , {deallocate, Freq}} ->

NewFrequencies=deallocate(Frequencies,
Freq),

reply(Pid, ok),

loop(NewFrequencies);

{'EXIT', Pid, _Reason} ->

NewFrequencies = exited(Frequencies, Pid),

loop(NewFrequencies);

{request, Pid, stop} ->

reply(Pid, ok)

end.

exited({Free, Allocated}, Pid) ->

case lists:keysearch(Pid,2,Allocated) of

{value,{Freq,Pid}} ->

NewAllocated =
lists:keydelete(Freq,1,Allocated),

{[Freq|Free],NewAllocated};

false ->

{Free,Allocated}

end.

Presenter
Presentation Notes
Much of UML … and most of the useful part … is modelling data types and their relationships

Soft-Ware

There’s no single
correct design …

… different options
for different
situations.

Maintain flexibility as
the system evolves.

Refactoring

Refactoring means changing the
design or structure of a program …
without changing its behaviour.

RefactorModify

Not just programming

Paper or presentation
moving sections about; amalgamate sections; move
inline code to a figure; animation.

Proof
add lemma; remove, amalgamate hypotheses.

Tests
refactor tests themselves, or evolve them in synch
with the program.

Generalisation
-module (test).

-export([f/1]).

add_one ([

H|T]) ->

[H+1

| add_o

ne(T)];

add_one ([]) -> [].

f(X) -> add_one(X).

-module (test).

-export([f/1]).

add_one (N, [H|T]) ->

[H+N

| add_one(N,T)];

add_one (N,[]) -> [].

f(X) -> add_one(1, X).

-module (test).

-export([f/1]).

add_int (N, [H|T]) ->

[H+N

| ad

d

_int(

N,T)];

add_int (N,[]) -> [].

f(X) -> add_int(1, X).

Generalisation and renaming

Generalisation
-export([printList/1]).

printList([H|T]) ->

io:form

at("~p\n",[H]),

printList(T);

printList([]) -> true.

printList([1,2,3])

-export([printList/2]).

printList(F,[H|T]) ->

F(

H),

printList(F, T);

printList(F,[]) -> true.

printList(

fun(

H) ->

io:form

at("~p\n", [H])

end,

[1,2,3]).

Presenter
Presentation Notes
Here we see the effect of a refactoring in a function with side effects: need to lift out the action as a function … even if no argument, we need to delay the action until the body of the function is called, rather than when the parameters to the function are evaluated.

The tool

Refactoring tool support

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, …

Undo/redo

Enhanced creativity

Wrangler

Refactoring tool for
Erlang

Integrated into Emacs
and Eclipse

Multiple modules

Structural, process,
macro refactorings

Duplicate code
detection …
… and elimination

Testing / refactoring

"Similar" code
identification

Property discovery

Semantic analysis

Binding structure
• Dynamic atom creation, multiple binding occurrences,
pattern semantics etc.

Module structure and projects
• No explicit projects for Erlang; cf Erlide / Emacs.

Type and effect information
• Need effect information for e.g. generalisation.

Erlang refactoring: challenges

Multiple binding occurrences of variables.
Indirect function call or function spawn:

apply (lists, rev, [[a,b,c]])

Multiple arities … multiple functions: rev/1

Concurrency
Refactoring within a design library: OTP.
Side-effects.

Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible … but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

Architecture of Wrangler

Refactorings in Wrangler

• Renaming variable,
function, module, process
• Function generalisation
• Move function between
modules.
• Function extraction
• Fold against definition
• Introduce and fold
against macros.

• Tuple function
arguments together
• Register a process
• From function to process
• Add a tag to messages

All these refactorings work
across multiple-module
projects and respect
macro definitions.

Integration with ErlIDE

Tighter control
of what's a
project.

Potential for
adoption by
newcomers to
the Erlang
community.

Clone detection

Clone detection

The Wrangler clone detector

- Relatively efficient

- No false positives

Refactorings support interactive removal of
clones.

Integrated in the development environment.

23

Presenter
Presentation Notes
 This slide summarise the existing clone detection approaches.

Basically, program text-based and token based approaches are efficient, but might report code fragments that are not syntactically

well-formed because of the lack of syntactic information at text, or token level. Furthermore, because of the lack of semantic information, these approaches are not suitable for detecting code fragments that are not exactly the same, but are

transformable to each other by semantic-preserving renaming of variables/literals.

AST-based approaches do not have problem with reporting syntactically well-formed clones, but are generally less efficient. Well-designed algorithms are needed for efficient sub-tree comparisons.

PDG-based approaches, mainly for imperative languages, aim to take semantic information into account. PDG-based approaches are robust to reordered statements, insertion and deletion of code, intertwined code, and non-contiguous code, but they are not scalable to large size programs.

Hybrid approaches use more than one code representation and/or techniques in detecting clones.

Some of the existing approaches claim to be language independent. But without a deeper knowledge of the semantics of the target

language, the approaches could have a lower precision (reports more false positves) than those language dependent approaches.

Clone detection

Clone detection

Clone detection …
… and elimination.
Find code that is
similar …
… common
abstraction …

Examples:
Test code from
Ericsson: different
medium and codec.
Clone removal
example: 2.6k to
2.0k and counting.

Property extraction

Support property
extraction from 'free'
and EUnit tests.

Fitting into the ProTest
project: move from test
cases to properties in
QuickCheck.

Use Wrangler to spot
clones, and to build
properties from them.

Refactoring and tests

Respecting test code
in EUnit, QuickCheck
and Common Test.

Refactor tests along
with code refactoring.

Refactor tests: e.g.
• Convert tests into EUnit
tests.
• Group EUnit tests into a
single test generator.
• Move EUnit tests into a
separate test module.
• Normalise EUnit tests.
• Extract common setup and
tear-down code into EUnit
fixtures.

Interface and user experience

User experience:
preview changes,
code inspector, …

Multi-version: Erlang,
OS, Java, Eclipse.

Further integration into
Erlide: allow use of the
contextual menu.

Windows installer.

Hands-on

Installation: Mac OS X and Linux

Requires: Erlang release R11B-5, 12B or 13B

31

Installation: Mac OS X and Linux
Download Wrangler from

http://www.cs.kent.ac.uk/projects/wrangler/

or get it from the memory stick …

In the wrangler directory
./configure
make

sudo

make install

32

Installation: Mac OS X and Linux
Add to ~/.emacs

file:

(add-to-list 'load-path
"/usr/local/share/wrangler/elisp")

(require 'wrangler)

If you’re installing emacs now, then you add the
following lines to your ~/.emacs

file

(setq

load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
load-path))

(setq

erlang-root-dir "/usr/local/otp")
(setq

exec-path (cons "/usr/local/otp/bin" exec-path))
(require 'erlang-start)

33

Installation: Debian package
Will be available from the homepage in the next
week …

… also on the memory stick.

34

Installation: Windows
Requires R11B-5, 12B, 13B + Emacs

Download installer from
http://www.cs.kent.ac.uk/projects/wrangler/

Requires no other actions.

35

Installation: Eclipse + ErlIDE
Requires Erlang R11B-5 or later, if it isn't
already present on your system.

On Windows systems, use a path with no
spaces in it.

Install Eclipse 3.4 or 3.5, if you didn't already.

All the details at
http://erlide.sourceforge.net/

36

Starting Wrangler in Emacs

Open emacs, and open a .erl

file.
M-x erlang-refactor-on

or ...

... C-c, C-r
New menus: Refactor and Inspector
Customise for dir
Undo C-c, C-_

37

Preview Feature

Preview changes before confirming the
change

Emacs ediff

is used.

38

Stopping Wrangler in Emacs

M-x erlang-refactor-off

to stop Wrangler

Shortcut C-c, C-r

39

Carrying on …

Try on your own project code …

Feedback:
erlang-refactor@kent.ac.uk

or

H.Li@kent.ac.uk

40

	Refactoring Erlang �with Wrangler
	Overview
	Introduction
	Design
	All in the code
	Soft-Ware
	Refactoring
	Not just programming
	Generalisation
	Generalisation
	The tool
	Refactoring tool support
	Wrangler
	Semantic analysis
	Erlang refactoring: challenges
	Static vs dynamic
	Architecture of Wrangler
	Slide Number 19
	Refactorings in Wrangler
	Integration with ErlIDE
	Clone detection
	Clone detection
	Clone detection
	Clone detection
	Property extraction
	Refactoring and tests
	Interface and user experience
	Hands-on
	Installation: Mac OS X and Linux
	Installation: Mac OS X and Linux
	Installation: Mac OS X and Linux
	Installation: Debian package
	Installation: Windows
	Installation: Eclipse + ErlIDE
	Starting Wrangler in Emacs
	Preview Feature
	Stopping Wrangler in Emacs
	Carrying on …

