QuviQ
PULSE Tutorial

Hans Svensson and Michat Patka

1A A E R S
Sl H
\ ,—:'&‘:—: '}, A L M S
NG =\ 7
St

property based testing

Introducing example Q

* Very often we write code like:

Items = gather_items(),
lists: foreach(fun(I) -> process_item(I) end, Items)

or

Items = gather_items(),
Res = Tists:map(fun(I) -> process_item(I) end, Items)

* Each process_item(I) IS INndependent
« Natural place to parallelize!

Test

property based testing

Introducing example Q

 Itis enough to replace map with parallel map
(pmap)Z

Items = gather_items(),
Res = pmap(fun(I) -> process_item(I) end, Items)

« Unfortunately there Is no standard parallel map
In Erlang

* How about implementing one!?

Test

property based testing

Property Driven Development Q

* First write the property!

-include_1ib(“eqc/include/eqc.hr1”).

prop_pmap() ->
?FORALL({Fun,Items}, {functionl(nat()),list(nat())},

Res = lists:map(Fun,Items),
PRes = pmap:pmap(Fun,Items),-

Test

property based testing

Implementing pmap Q

* First attempt
-moduTe(pmap) .
-export([pmap/2]).
pmap (F,Ls) ->
Self = self(),

[spawn(fun() -> Self ! F(L) end) || L <- Ls],
[receive Res -> Res end || _ <- Ls].

Test

property based testing

Testing with QuickCheck Q

2>eqc: quickcheck (pmap_eqc: prop_pmap()).

OK, passed 100 tests
true

Good, but let’'s run some more tests...
3>eqc:quickcheck (eqc:numtests (10000, pmap_eqc:prop_pmap())).

OK, passed 10000 tests
true

Test

property based testing

Testing with QuickCheck Q

» Perfect! Move on to next problem...
« Or walt a second, what was It we tested?!?

« A concurrent implementation on a slow single-
core laptop!

* Not good enough!

When a test passes, always think
about what you just tested!

Test

property based testing

Testing with QuickCheck, 2" try... Q

Erlang R13B02 (erts-5.7.2) .. [smp:2:2]

5>eqc: quickcheck (pmap_eqc:prop_pmap()).

OK, passed 100 tests
true

Still passes, maybe it is actually correct...

8>eqc:quickcheck (eqc:numtests (10000, pmap_eqc:prop_pmap())).

{#Fun<eqc gen.101.34507915>,[30,1,22, 3 18,25,22]}

false \§§<§:\\\

[Ouch!]

Test

property based testing

Property Driven Development Q

« We need more information!
?WHENFAIL - torun code when a property fail

« We want to see the values of Res and PRes.

-include_11ib(“eqc/include/eqc.hr1”).

prop_pmap() ->
?FORALL({Fun,Items}, {functionl(nat()),nat(Q},

begin
Res = lists:map(Fun,Items),
PRes = pmap:pmap(Fun,Items),
?WHENFAIL(
10: format(“~p /= ~p\n”’, [Res,PRes]),
Res == PRes))
end).

Test

property based testing

Testing with QuickCheck, 2" try... Q

8>eqc:quickcheck (eqc:numtests (1000, pmap_eqc:prop_pmap())).

{#Fun<eqc gen.101.41379873>, [11, 19 14,14,6,32, 33, 18 26,71}
[30,13,5,5,0,21,24,29,4,20] /= [30,13,5,5,0,21,24,29,20,4]
Shrinking. (1 times)
{#Fun<eqc_gen.101.41379873>,[11,19,14,14,6,32,33,18]}
[30,13,5,5,0,21,24,29] /= [30,29,24,13,21,5,0,5]

false

Test

property based testing

Observations Q

« Switching to multi-core (or enabling SMP) makes
concurrency bugs more likely to manifest

 We had to run quite a few tests

« Shrinking didn’t work (very well)
— A small counterexample is often very valuable
— Shrinking a counterexample is done stepwise
— Counterexample that ‘happens’ to fail will not shrink well

Test

property based testing

Erlang scheduling Q

* The Erlang scheduler is too deterministic
— Small tests
— Low load on system
— Deterministic even in multi-core systems
— Large tests are needed to provoke race conditions
— Many race conditions may not show up until you
deploy your system
« With randomized scheduling
— Small tests are more likely to provoke race conditions
— Find concurrency bugs early in development process

Test

property based testing

PULSE to the rescue Q

« PULSE to the rescue
— P — ProTest
— U - User
— L - Level
— S — Scheduler
— E - for Erlang

 PULSE is non-deterministic (random scheduling)
« PULSE can re-run a schedule (repeatable tests)

Test

property based testing

How PULSE works Q

« Controls the concurrency

— Only one process is executing at a time
* Records all concurrency events

— Message sending

— Process spawning
— Etc...

 PULSE can switch to executing another process
(simulating context switch) at any time

 We make sure that unlikely scenarios get tested

Test

property based testing

How to use PULSE Q

pulse instrument:
— Instrumentation of the code at compile time

* Implemented as parse_transform compiler option

« Example:
c(example, [{parse_transform,pulse_instrument}]).

« Calls to spawn, link as well as statements ! and
receive, etc are replaced by calls handled by
PULSE

Test

property based testing

How to use PULSE Q

* Running instrumented code:

5> c(pmap, [{parse_transform,pulse_instrument}]).

{ok,pmap}
6> pulse:run(fun(Q ->
pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).
**% exception exit: {application,pulse_not_running}
in function pulse:spawn/2

Application PULSE must be running: pulse:start().

The PULSE application keeps state: last used schedule,
random seed, etc, and gives access to event handlers for

different kind of output.

Test

property based testing

How to use PULSE Q

8> pulse:start().

Starting eqc version 1.18 ..

9> pulse:run(fun(Q) ->
pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]

scheduling started

root spawns pmap <0.234.0>

root spawns pmapl <0.235.0>

root blocks

pmap sends 3 to root

pmap terminated normally

root receives 3

return value [3,4]
scheduling finished
10>

Test

property based testing

?PULSE macro Q

QuickCheck uses ?PULSE macro:

?PULSE(
<Pattern bound to result of E>,
<Expression E to run in PULSE>,
<Property using result of E>

)

* Normal compilation:
Run code normally

« Compilation with pulse_instrument, PULSE running:
Run code with PULSE scheduler

Test

property based testing

How to use PULSE with QuickCheck Q

« Update property!

-include_1l1ib(*“eqc/include/eqc. hrl1”).

prop_pmap() ->
?FORALL({Fun,Items}, {functionl(nat()),nat(Q},

begin w
. This is what we want
Res 11sts:map(Fun.Items).‘41::£ to run in PULSE

1

PRes = pmap:pmap(Fun,Items),
?WHENFAIL(
10: format(“~p /= ~p\n”’, [Res,PRes]),
Res == PRes)
end) .

Test

property based testing

How to use PULSE with QuickCheck Q

« Update property! %SEdefinitions]
-include_1l1ib(*“eqc/include/eqc. hrl™).

-include_1ib(“pulse/include/pulse.hrl”).

prop_pmap() ->

begin
Res = lists:map(Fun,Items),
?PULSE (7 :
7| PRes, PRes = PmaP-Pmap(Fun,Items):

PULSE macro | pmap:pmap (Fun,Items),
S WHENFAIL(

10: format(“~p /= ~p\n”’, [Res,PRes]),
Res == PResjj
end) .

Test

property based testing

Verbosity in PULSE Q

* Don't forget the verbosity:
pulse:verbose/1l.

24> pulse:verbose([]).
ok

25> pulse:run(fun() ->
pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).
[3,4]

26> pulse:verbose([all]).
ok

27> pulse:run(fun(Q) ->
pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).
[3,4]
scheduling started
root spawns pmap <0.234.0>
root spawns pmapl <0.235.0>

Test

property based testing

Verbosity in PULSE Q

* Verbosity options:
all - Allverbosity flags
send - Show sending of messages
‘receive’- Show delivery and receiving of messages
procs - Show process events (spawn, link, etc.)
side_effect - Show (user defined) side effects

« Options are similar to trace patterns

Test

property based testing

How to use PULSE with QuickCheck

32> pulse:verbose([]).

ok

33> eqc:quickcheck(pmap_eqc:prop_pmap()).
............ Failed! After 23 tests.
{#Fun<eqc_gen.101.34457915>,[0,2,0]}
{29191,1432,12821}

[3,1,1] /= [1,3,1]

Shrinking... (3 times)
{#Fun<eqc_gen.101.34457915>,[0,1]}
{29191,1432,12821}

[3,0] /= [0,3]

false

* Fewer test cases needed
 Shrinking works (for this example)

Test

property based testing

Understanding the Counterexample Q

« Whatis the error?

« We can use pulse:rerun_counterexample/2 to re-run the
counterexample with more verbosity

- Gets the last counterexample from eqc: counterexample/0
- Uses eqc: check/2 to re-run the property

Test

property based testing

35> pulse:rerun_counterexample([all]l,pmap_eqc:prop_pmap()).
scheduling started

root spawns pmap <0.244.0>

root spawns pmapl <0.245.0>

root blocks

pmap sends 3 to root

pmap terminated normal

pmapl sends 0 to root

pmapl terminated normal

pmapl delivers 0 to root

root receives 0O

root blocks

pmap delivers 3 to root

root receives 3

return value [0, 3]

scheduling finished

Failed!
{#Fun<eqc_gen.101.34457915>,[0,1]}
{29197,1532,821}

[3’01 /= [053]

false
36>

Visualization Q

* Another way of understanding an error
« We can visualize the schedule to easier understand it!

* Requires pulse_event_graph to be added as event
handler: pulse_event_graph:start().

36> pulse_event_graph:start([]).
ok

37> pulse:rerun_counterexample([],pmap_eqc:prop_pmap()).
pulse_event_graph set verbose to []

pulse_event_terminal set verbose to []

Failed!

* Every scheduled run now creates a graph.dot file!

Test

property based testing

Visualization

3 \

pmap pmapl

é

Uresult,[..]}

7

Requires GraphViz to be installed. In particular the program dot
http://www.graphviz.org/ o
Test

property based testing

pmap 2" attempt

e We need to ensure the order of the results:
-module(pmap) .

-export([pmap/2]).

pmap(F,Ls) ->

Self = self(),

Pids = [spawn(fun() -> Self ! {self(),F(L)} end)
|| L <- Ls1,

[receive {Pid,Res} -> Res end
|| Pid <- Pids].

Test

property based testing

Testing the new implementation Q

45>eqc:quickcheck(pmap_eqc:prop_pmap()).

OK, passed 100 tests
true

Good, but again, let's run some more tests...
48>eqc:quickcheck(eqc:numtests (10000, pmap_eqc:prop_pmap())).

OK, passed 10000 tests
true

Done! But now we should add some fault tolerance, etc...

Test

property based testing

Visualization — A correct run Q

root

¥
pmap. Pids map.Pids1
Y .
O
N }l

-

i

N

result,[..]}

Test

property based testing

Short break!

Try 1t yourselves!

Next: User defined side effects
Test

property based testing

Side effects Q

« Concurrency errors can be caused by modules interacting

with other modules.
« Example: writefile

prop_writefile(Q ->
?FORALL({Textl,Text2}, {string(),string(Q},
begin
ok = file:write_file(?TESTFILE,Textl),
ok = file:write_file(?TESTFILE,Text2),
{ok,Bin} = file:read_file(?TESTFILE),
binary_to_list(Bin) == Text2
end).

Not very interesting,
since it is sequential
it works. How about
\parallel file writing?

les

property based testing

Side effects Q

« Withasimple ?PAR macro we parallelize the writes

-define(PAR(E1,E2),
begin
spawn(fun() -> E1 end),
spawn(fun() -> E2 end)

end) .
prop_writefileO -> Write files in
?FORALL({Textl,Text2}, {string(),string(Q}, parallel

begin

?PAR(file:write_file(?TESTFILE,Textl), -
file:write_file(?TESTFILE,Text2)),

{ok,Bin} = file:read_file(?TESTFILE),

The result should

Res = binary_to_1list(Bin), M
Res == Textl orelse Res == Text2 e either of the
strings
end) .

Test

property based testing

Example: write_file Q

2> eqc:quickcheck(writefile:prop_writefile()).
.Failed! After 2 tests.
{“e” . !!q!!}

false

Strange! Fails almost
immediately, on very

» Add some more output: short strings.

{ok,Bin} = file:read_file(?TESTFILE),
Res = binary_to_1l1ist(Bin),

?WHENFAIL(
10: format(“Res: ~\n”, [Res]),
Res == Textl orelse Res == Text2)
end) .

Test

property based testing

Example: write_file — more output Q

7> eqc:quickcheck(writefile:prop_writefile(Q)).
Failed! After 1 tests.

{“_F!! , !!e!!}
Res: “z”
false

Test

property based testing

Example: write_file — PULSE Q

* Add ?PULSE to the property:

prop_writefile(Q) ->

?FORALL({Textl,Text2}, {string(),string(Q},
?PULSE(
Res,
begin

?PAR(...),

{ok,Bin} = file:read_file(?TESTFILE),

binary_to_1list(Bin),
end,
?WHENFAIL(i0:format(“Res: ~\n”,[Res]),

Res == Textl orelse Res == Textzﬂj).

Test

property based testing

Example: write_file — more output

9> pulse:start() ,pulse:verbose([all]).

10> eqc:quickcheck(writefile:prop_writefile()).

scheduling started

root spawns ‘prop_writefile.Res’ <0.1528.0>
root spawns ‘prop_writefile.Resl’ <0.1529.0>

return value “k”

‘prop_writefile.Resl’ terminated normal
‘prop_writefile.Res’ terminated normal
scheduling finished

Failed! After 1 tests.

{“f7,7e”}

{8534,66433,27482}

Res: “k”

false

e >

Doesn't tell us very
much more, we

know that write_file

IS a side-effect, but

KPULSE does not...j

Test

property based testing

Example: write_file — PULSE behavior Q

11> pulse:rerun_counterexample([all],
writefile:prop_writefile()).
scheduling started

OK, passed the test.

p
true ?27?
L Now the test passed!

 Important PULSE fact:
PULSE does not control the universe!

 PULSE cannot re-run a schedule (faithfully) when the
environment has changed (new files are written etc...)

Test

property based testing

User defined side-effects Q

« Wewant PULSE to show an event when we
perform a file operation.

All calls to module file are considered side effects:

c(writefile,
[{parse_transform,pulse_instrument},
{pulse_side_effect, [{file,'_','_"}1} D).

Matching module, function, arguments]

Test

property based testing

Example: write_file — more output

Q

13> eqc:quickcheck(writefile:prop_writefile()).

scheduling started

root spawns ‘prop_writefile.Res’ <0.1832.0>
root spawns ‘prop_writefile.Resl’ <0.1833.0>

root yields
‘prop_writefile.Resl’ yields
‘prop_writefile.Res’ yields
root continues

Aha! We are reading
the file before either of
the writers has written

anything!

)

root side-effect file:read_file(

“D:/Tmp/testfile.txt”) result in {ok,<<“x”">>}

return value “x
‘prop_writefile.Resl’ continues

‘prop_writefile.Resl’ side-effect file:write_file(

“D:/Tmp/testfile.txt”) result in ok

Test

property based testing

Writefile — Visualization

eread file("D:/Tmp/testfile. txt')
={ok, }

prop_writefile Res1

exwrite file("D:/Tmyp/testfile. txct","v'")
= ok

prop writefileRes

ewrite file("D:/Tmyp/testfile txt”,"e")
= ok

Test

property based testing

Solution: Synchronize Q

 PAR spawns two processes, but a third process is also
running in parallel to them!

Solution: Synchronize

~-define(PAR(E1l,E2),
begin
Self = self(),
spawn(fun() -> E1, Self!done end),

spawn(fun() -> E2, Self!done end),
receive done ->

receive done -> ok end
end
end).

Test

property based testing

Exercise:
Master-slave workers

Test

property based te

Master-Slave worker example Q

N workers: one master and N-1 slaves
Process registry is used to identify the master

Functionality in: master.erl
Test case In: master_eqc.er

There Is a race condition in the code, which is
hard to provoke with a test case

Hint: use pulse_side_effect

Test

property based testing

PULSE - summary and future

Two useful tricks
Performance with PULSE
A success story
Availability of PULSE
The future of PULSE

Test

property based testing

Tips and Tricks Q

 Whatto do when shrinking doesn’t work"?

* Mostly important in larger more complex
examples

* Even with pulse the counterexamples can be
large

* Visualization iIs also useful, but graphs quickly
gets quite large

Test

property based testing

Tips and Tricks Q

* Idea 1: 7ALWAYS(N,Property)-macro tries the
property N times, and fails if any of the tries fails

* |ldea 2: Try the property many times while
shrinking to increase the chance of hitting the bug

prop_XQ ->
?LET(Tries, ?SHRINK(1,[10]),

?ALWAYS(Tries,

. Tries will be 1 during
§| normal testing and 10
_ during shrinking

Test

property based testing

PULSE performance Q

« Comparing performance

« Used parallel map as benchmark
— Short computations: fib(N) where N = 10-15
— Long computations: fib(N) where N = 30-35
* Single core:

— With longer computations PULSE s faster!

— With short computations, communication dominates
and PULSE is (much) slower

 Multli-core:

— PULSE is always slower, since it only uses one of the
cores.

Test

property based testing

PULSE performance Q

« Performance is very application dependent

« Communication bound applications could be
x100 slower.

* A'normal’ distributed application is likely to be
x10 slower

— Due to not using multi-core
— and slower communication

Test

property based testing

A success story — PULSE used for proc_reg Q

« Real industrial example
* An optimized process registry

« Concurrency errors found by stress testing In
2006 (very large counterexamples)

« Nobody was able to track down the errors, so
the component was shelved

« With PULSE we got shorter counterexamples

« With PULSE and the visualizer we could explain
the error

« Described in paper at ICFP 2009
Test

property based testing

PULSE availability Q

e Two versions:

— Open source version (BSD license)
* Developed at Chalmers
« Work in progress (ProTest)
« Notvery user-friendly
* No public release yet

— Commercial version
 Available as part of Quviqg QuickCheck
» Package PULSE in application
* Integrates QuickCheck and PULSE

Test

property based testing

ProTest — PULSE future plans Q

« Missing features (multi-node support etc)
* Improve shrinking of traces

* Re-write the core for a more modular design
(already started)

« Support for testing timing dependent code
(receive after X -> ...)

« Package and release open source version

Test

property based testing

