
PULSE Tutorial

Hans Svensson and Michał Pałka

Introducing example

• Very often we write code like:

or

• Each process_item(I) is independent

• Natural place to parallelize!

Items = gather_items(),

lists:foreach(fun(I) -> process_item(I) end, Items)

Items = gather_items(),

Res = lists:map(fun(I) -> process_item(I) end, Items)

Introducing example

• It is enough to replace map with parallel map

(pmap):

• Unfortunately there is no standard parallel map

in Erlang

• How about implementing one!?

Items = gather_items(),

Res = pmap(fun(I) -> process_item(I) end, Items)

• First write the property!

-include_lib(“eqc/include/eqc.hrl”).

prop_pmap() ->

?FORALL({Fun,Items}, {function1(nat()),list(nat())},

begin

end).

Res = lists:map(Fun,Items),

PRes = pmap:pmap(Fun,Items),

Res == PRes

Property Driven Development

Generates a random

function returning

natural numbers!

Apply normal map

Apply parallel map

Compare the results

-module(pmap).

-export([pmap/2]).

pmap(F,Ls) ->

Self = self(),

[spawn(fun() -> Self ! F(L) end) || L <- Ls],

[receive Res -> Res end || _ <- Ls].

Implementing pmap

• First attempt

Testing with QuickCheck

2>eqc:quickcheck(pmap_eqc:prop_pmap()).

...

...

OK, passed 100 tests

true

Good, but let‟s run some more tests…

3>eqc:quickcheck(eqc:numtests(10000,pmap_eqc:prop_pmap())).

...

...

...

..

OK, passed 10000 tests

true

Testing with QuickCheck

• Perfect! Move on to next problem…

• Or wait a second, what was it we tested?!?

• A concurrent implementation on a slow single-

core laptop!

• Not good enough!

When a test passes, always think

about what you just tested!

Testing with QuickCheck, 2nd try…

Erlang R13B02 (erts-5.7.2) … [smp:2:2]

…

5>eqc:quickcheck(pmap_eqc:prop_pmap()).

...

...

OK, passed 100 tests

true

Still passes, maybe it is actually correct…

8>eqc:quickcheck(eqc:numtests(10000,pmap_eqc:prop_pmap())).

..

...... Failed! After 841 tests.

{#Fun<eqc_gen.101.34507915>,[30,1,22,3,18,25,22]}

false

Ouch!

-include_lib(“eqc/include/eqc.hrl”).

prop_pmap() ->

?FORALL({Fun,Items}, {function1(nat()),nat()},

begin

Res = lists:map(Fun,Items),

PRes = pmap:pmap(Fun,Items),

?WHENFAIL(

io:format(“~p /= ~p\n”,[Res,PRes]),

Res == PRes)

end).

• We need more information!

?WHENFAIL – to run code when a property fail

• We want to see the values of Res and PRes.

Property Driven Development

Testing with QuickCheck, 2nd try…

8>eqc:quickcheck(eqc:numtests(1000,pmap_eqc:prop_pmap())).

..

...... Failed! After 710 tests.

{#Fun<eqc_gen.101.41379873>,[11,19,14,14,6,32,33,18,26,7]}

[30,13,5,5,0,21,24,29,4,20] /= [30,13,5,5,0,21,24,29,20,4]

Shrinking.(1 times)

{#Fun<eqc_gen.101.41379873>,[11,19,14,14,6,32,33,18]}

[30,13,5,5,0,21,24,29] /= [30,29,24,13,21,5,0,5]

false

Observations

• Switching to multi-core (or enabling SMP) makes

concurrency bugs more likely to manifest

• We had to run quite a few tests

• Shrinking didn‟t work (very well)

– A small counterexample is often very valuable

– Shrinking a counterexample is done stepwise

– Counterexample that „happens‟ to fail will not shrink well

Erlang scheduling

• The Erlang scheduler is too deterministic

– Small tests

– Low load on system

– Deterministic even in multi-core systems

– Large tests are needed to provoke race conditions

– Many race conditions may not show up until you

deploy your system

• With randomized scheduling

– Small tests are more likely to provoke race conditions

– Find concurrency bugs early in development process

PULSE to the rescue

• PULSE to the rescue

– P – ProTest

– U – User

– L – Level

– S – Scheduler

– E – for Erlang

• PULSE is non-deterministic (random scheduling)

• PULSE can re-run a schedule (repeatable tests)

How PULSE works

• Controls the concurrency

– Only one process is executing at a time

• Records all concurrency events

– Message sending

– Process spawning

– Etc…

• PULSE can switch to executing another process

(simulating context switch) at any time

• We make sure that unlikely scenarios get tested

How to use PULSE

• pulse_instrument:

– Instrumentation of the code at compile time

• Implemented as parse_transform compiler option

• Example:
c(example,[{parse_transform,pulse_instrument}]).

• Calls to spawn, link as well as statements ! and

receive, etc are replaced by calls handled by

PULSE

How to use PULSE

• Running instrumented code:

Application PULSE must be running: pulse:start().

The PULSE application keeps state: last used schedule,

random seed, etc, and gives access to event handlers for

different kind of output.

5> c(pmap,[{parse_transform,pulse_instrument}]).

{ok,pmap}

6> pulse:run(fun() ->

pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

** exception exit: {application,pulse_not_running}

in function pulse:spawn/2

...

How to use PULSE

8> pulse:start().

Starting eqc version 1.18 …

9> pulse:run(fun() ->

pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]

scheduling started

root spawns pmap <0.234.0>

root spawns pmap1 <0.235.0>

root blocks

pmap sends 3 to root

pmap terminated normally

root receives 3

...

return value [3,4]

scheduling finished

10>

?PULSE macro

QuickCheck uses ?PULSE macro:

?PULSE(

<Pattern bound to result of E>,

<Expression E to run in PULSE>,

<Property using result of E>

)

• Normal compilation:

Run code normally

• Compilation with pulse_instrument, PULSE running:

Run code with PULSE scheduler

How to use PULSE with QuickCheck

• Update property!

-include_lib(“eqc/include/eqc.hrl”).

prop_pmap() ->

?FORALL({Fun,Items}, {function1(nat()),nat()},

begin

Res = lists:map(Fun,Items),

PRes = pmap:pmap(Fun,Items),

?WHENFAIL(

io:format(“~p /= ~p\n”,[Res,PRes]),

Res == PRes)

end).

This is what we want

to run in PULSE

How to use PULSE with QuickCheck

• Update property!

-include_lib(“eqc/include/eqc.hrl”).

-include_lib(“pulse/include/pulse.hrl”).

prop_pmap() ->

?FORALL({Fun,Items}, {function1(nat()),nat()},

begin

Res = lists:map(Fun,Items),

?PULSE(

PRes,

pmap:pmap(Fun,Items),

?WHENFAIL(

io:format(“~p /= ~p\n”,[Res,PRes]),

Res == PRes))

end).

PULSE macro

PULSE definitions

PRes = pmap:pmap(Fun,Items)

Verbosity in PULSE

• Don‟t forget the verbosity:
• pulse:verbose/1.

24> pulse:verbose([]).

ok

25> pulse:run(fun() ->

pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]

26> pulse:verbose([all]).

ok

27> pulse:run(fun() ->

pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]

scheduling started

root spawns pmap <0.234.0>

root spawns pmap1 <0.235.0>

...

Verbosity in PULSE

• Verbosity options:
• all – All verbosity flags

• send - Show sending of messages

• „receive„- Show delivery and receiving of messages

• procs – Show process events (spawn, link, etc.)

• side_effect – Show (user defined) side effects

• Options are similar to trace patterns

How to use PULSE with QuickCheck

32> pulse:verbose([]).

ok

33> eqc:quickcheck(pmap_eqc:prop_pmap()).

............Failed! After 23 tests.

{#Fun<eqc_gen.101.34457915>,[0,2,0]}

{29191,1432,12821}

[3,1,1] /= [1,3,1]

Shrinking...(3 times)

{#Fun<eqc_gen.101.34457915>,[0,1]}

{29191,1432,12821}

[3,0] /= [0,3]

false

• Fewer test cases needed

• Shrinking works (for this example)

Understanding the Counterexample

• What is the error?

• We can use pulse:rerun_counterexample/2 to re-run the

counterexample with more verbosity

- Gets the last counterexample from eqc:counterexample/0

- Uses eqc:check/2 to re-run the property

35> pulse:rerun_counterexample([all],pmap_eqc:prop_pmap()).

scheduling started

root spawns pmap <0.244.0>

root spawns pmap1 <0.245.0>

root blocks

pmap sends 3 to root

pmap terminated normal

pmap1 sends 0 to root

pmap1 terminated normal

pmap1 delivers 0 to root

root receives 0

root blocks

pmap delivers 3 to root

root receives 3

return value [0,3]

scheduling finished

Failed!

{#Fun<eqc_gen.101.34457915>,[0,1]}

{29197,1532,821}

[3,0] /= [0,3]

false

36>

Visualization

• Another way of understanding an error

• We can visualize the schedule to easier understand it!

• Requires pulse_event_graph to be added as event

handler: pulse_event_graph:start().

36> pulse_event_graph:start([]).

ok

37> pulse:rerun_counterexample([],pmap_eqc:prop_pmap()).

pulse_event_graph set verbose to []

pulse_event_terminal set verbose to []

Failed!

...

• Every scheduled run now creates a graph.dot file!

Visualization

Requires GraphViz to be installed. In particular the program dot

http://www.graphviz.org/

Work in progress,

the only thing seen

is the order of the

messages.

pmap 2nd attempt

• We need to ensure the order of the results:

-module(pmap).

-export([pmap/2]).

pmap(F,Ls) ->

Self = self(),

Pids = [spawn(fun() -> Self ! {self(),F(L)} end)

|| L <- Ls],

[receive {Pid,Res} -> Res end

|| Pid <- Pids].

Tag the messages

with the Pid of the

worker process

Use selective

receive to fetch the

results in order

Testing the new implementation

45>eqc:quickcheck(pmap_eqc:prop_pmap()).

...

...

OK, passed 100 tests

true

Good, but again, let‟s run some more tests…

48>eqc:quickcheck(eqc:numtests(10000,pmap_eqc:prop_pmap())).

..

..

...

..

OK, passed 10000 tests

true

Done! But now we should add some fault tolerance, etc...

Visualization – A correct run

The messages are

delivered in the

wrong order, but

consumed in the

right order

Short break!

Try it yourselves!

Next: User defined side effects

Side effects

• Concurrency errors can be caused by modules interacting

with other modules.

• Example: writefile

prop_writefile() ->

?FORALL({Text1,Text2},{string(),string()},

begin

ok = file:write_file(?TESTFILE,Text1),

ok = file:write_file(?TESTFILE,Text2),

{ok,Bin} = file:read_file(?TESTFILE),

binary_to_list(Bin) == Text2

end).

Not very interesting,

since it is sequential

it works. How about

parallel file writing?

Side effects

• With a simple ?PAR macro we parallelize the writes

-define(PAR(E1,E2),

begin

spawn(fun() -> E1 end),

spawn(fun() -> E2 end)

end).

prop_writefile() ->

?FORALL({Text1,Text2},{string(),string()},

begin

?PAR(file:write_file(?TESTFILE,Text1),

file:write_file(?TESTFILE,Text2)),

{ok,Bin} = file:read_file(?TESTFILE),

Res = binary_to_list(Bin),

Res == Text1 orelse Res == Text2

end).

Write files in

parallel

The result should

be either of the

strings

...

{ok,Bin} = file:read_file(?TESTFILE),

Res = binary_to_list(Bin),

?WHENFAIL(

io:format(“Res: ~\n”,[Res]),

Res == Text1 orelse Res == Text2)

end).

Example: write_file

2> eqc:quickcheck(writefile:prop_writefile()).

.Failed! After 2 tests.

{“e”,”q”}

false
Strange! Fails almost

immediately, on very

short strings.• Add some more output:

Example: write_file – more output

7> eqc:quickcheck(writefile:prop_writefile()).

Failed! After 1 tests.

{“f”,”e”}

Res: “z”

false

???

Where does “z” come

from? Maybe we should

try PULSE?

Example: write_file – PULSE

• Add ?PULSE to the property:

prop_writefile() ->

?FORALL({Text1,Text2},{string(),string()},

?PULSE(

Res,

begin

?PAR(...),

{ok,Bin} = file:read_file(?TESTFILE),

binary_to_list(Bin),

end,

?WHENFAIL(io:format(“Res: ~\n”,[Res]),

Res == Text1 orelse Res == Text2))).

Example: write_file – more output

9> pulse:start(),pulse:verbose([all]).

...

10> eqc:quickcheck(writefile:prop_writefile()).

scheduling started

root spawns „prop_writefile.Res‟ <0.1528.0>

root spawns „prop_writefile.Res1‟ <0.1529.0>

return value “k”

„prop_writefile.Res1‟ terminated normal

„prop_writefile.Res‟ terminated normal

scheduling finished

Failed! After 1 tests.

{“f”,”e”}

{8534,66433,27482}

Res: “k”

false

Doesn‟t tell us very

much more, we

know that write_file

is a side-effect, but

PULSE does not...

Example: write_file – PULSE behavior

11> pulse:rerun_counterexample([all],

writefile:prop_writefile()).

scheduling started

...

OK, passed the test.

true ???

Now the test passed!

• Important PULSE fact:

PULSE does not control the universe!

• PULSE cannot re-run a schedule (faithfully) when the

environment has changed (new files are written etc...)

User defined side-effects

• We want PULSE to show an event when we

perform a file operation.

All calls to module file are considered side effects:
c(writefile,

[{parse_transform,pulse_instrument},

{pulse_side_effect,[{file,'_','_'}]}]).

Matching module, function, arguments

Example: write_file – more output

13> eqc:quickcheck(writefile:prop_writefile()).

scheduling started

root spawns „prop_writefile.Res‟ <0.1832.0>

root spawns „prop_writefile.Res1‟ <0.1833.0>

root yields

„prop_writefile.Res1‟ yields

„prop_writefile.Res‟ yields

root continues

root side-effect file:read_file(

“D:/Tmp/testfile.txt”) result in {ok,<<“x”>>}

return value “x”

„prop_writefile.Res1‟ continues

„prop_writefile.Res1‟ side-effect file:write_file(

“D:/Tmp/testfile.txt”) result in ok

...

Aha! We are reading

the file before either of

the writers has written

anything!

Writefile – Visualization

Dashed lines

indicates „happens-

before‟ causal

relations

Solution: Synchronize

• PAR spawns two processes, but a third process is also

running in parallel to them!

Solution: Synchronize

-define(PAR(E1,E2),

begin

Self = self(),

spawn(fun() -> E1, Self!done end),

spawn(fun() -> E2, Self!done end),

receive done ->

receive done -> ok end

end

end).

Exercise:

Master-slave workers

Master-Slave worker example

• N workers: one master and N-1 slaves

• Process registry is used to identify the master

• Functionality in: master.erl

• Test case in: master_eqc.erl

• There is a race condition in the code, which is

hard to provoke with a test case

• Hint: use pulse_side_effect

PULSE – summary and future

• Two useful tricks

• Performance with PULSE

• A success story

• Availability of PULSE

• The future of PULSE

Tips and Tricks

• What to do when shrinking doesn‟t work?

• Mostly important in larger more complex

examples

• Even with pulse the counterexamples can be

large

• Visualization is also useful, but graphs quickly

gets quite large

prop_X() ->

?LET(Tries, ?SHRINK(1,[10]),

...

?ALWAYS(Tries,

...

)

...

).

Tips and Tricks

• Idea 1: ?ALWAYS(N,Property)-macro tries the

property N times, and fails if any of the tries fails

• Idea 2: Try the property many times while

shrinking to increase the chance of hitting the bug

Tries will be 1 during

normal testing and 10

during shrinking

PULSE performance

• Comparing performance

• Used parallel map as benchmark

– Short computations: fib(N) where N = 10-15

– Long computations: fib(N) where N = 30-35

• Single core:

– With longer computations PULSE is faster!

– With short computations, communication dominates

and PULSE is (much) slower

• Multi-core:

– PULSE is always slower, since it only uses one of the

cores.

PULSE performance

• Performance is very application dependent

• Communication bound applications could be

x100 slower.

• A „normal‟ distributed application is likely to be

x10 slower

– Due to not using multi-core

– and slower communication

A success story – PULSE used for proc_reg

• Real industrial example

• An optimized process registry

• Concurrency errors found by stress testing in

2006 (very large counterexamples)

• Nobody was able to track down the errors, so

the component was shelved

• With PULSE we got shorter counterexamples

• With PULSE and the visualizer we could explain

the error

• Described in paper at ICFP 2009

PULSE availability

• Two versions:

– Open source version (BSD license)

• Developed at Chalmers

• Work in progress (ProTest)

• Not very user-friendly

• No public release yet

– Commercial version

• Available as part of Quviq QuickCheck

• Package PULSE in application

• Integrates QuickCheck and PULSE

ProTest – PULSE future plans

• Missing features (multi-node support etc)

• Improve shrinking of traces

• Re-write the core for a more modular design

(already started)

• Support for testing timing dependent code

(receive after X -> ...)

• Package and release open source version

