Get going with equations ’
for simple lists, queues an

Formal

Demystifies
everything from
algebraic specifications

A R Efer ence to abstraction
for the

Rest of Us!

FREE eTips at dummies.com*

Koen Claessen
John Hughes
ick Smallbone




A simple API

Lists — append, cons and nil:

list() ++ list() - Llist()
[int()|list()] - list()
[] » list()

How can we test these functions?

Write properties!




Properties in all their wonder

prop_appendnil() -
?FORALL(Xs, list(int()),
Xs ++ [] == Xs).

1> eqc:quickcheck(prop:prop appendnil()).

OK, passed 100 tests

But how do we know what properties to write?
QuickSpec to the rescue!




DEMO

listsig.erl



What could you use this for?

-ormulating properties

Jnderstanding someone else's code

~inding bugs
Pure functions only!



How does QuickSpec work?

I'm not telling you yet :)
Equations are tested on random input

Equations relate simple enough expressions built
from functions and variables

Xs depth 1 Too

Xs ++ |1 depth 2 complicate
Xs ++ (Ys ++ Zs) depth 3 d

Xs ++ ((Ys ++ Zs) ++ Zs) depthd—

Completeness: all true equations about simple
enough expressions are found.



The queue API

Q= |1 2 3

n(4,Q= 1 2 3

{head(Q), tail(Q)} = { 1 ,| 2




The queue API, in reverse

Q = 1|2 |3

inr(4,Q= 4 1 2 3

(daeh(Q), liat@Q)}= { 8 , * 2 }

K
lait(Q)!




DEMO

gueuesig.er]



What's wrong?

lait(in(X, Q)) /= Q, because the two
gueues might have different representations!

But the queues should have the same contents.

In other words,
to list(lait(in(X, Q)) ==
to list(Q).

Why don't we compare those instead?



What's wrong?

We want to see this law:
1s empty(new()) == true()

But QuickSpec doesn't know about true!



What's wrong?

We want to see this law:
reverse(to list(Q)) ==
to list(reverse(Q))

In that case, we need the reverse function on
lists!



How did we get nice laws?

Compare the elements of a queue, not its internal
representation:

observe(Q, queue) ->
queue:to list(Q).

Add reverse so that we see the symmetry
between tail and lait.

Use lists as a model of queues.




What on earth is this?

bar(X,foo()) == apa()

bar(X,monkey(X,P,I)) == P

bar(Y,monkey(X,P,foo())) == bar(X,monkey(Y,P,foo()))
bar(X,monkey(Y,apa(),foo())) == apal()

monkey (X, P,monkey(X,Q,I)) == monkey(X,P,I)

monkey (Y, P,monkey(X,P,I)) == monkey(X,P,monkey(Y,P,I))

...and why does the highlighted law hold?




.It's arrays!

get(I,new()) == default element()
get

(
I,set(I,X,A)) == X
get(J,set(I,X,new())) == get(I,set(J,X,new()))

set(I,X,set(I,Y,A)) == set(I,X,A)

(
(
t(
get(I,set(J,default element(),new())) == new()
(
set(J,X,set(I,X,A)) == set(I, X,set(J,X,A))



What on earth is this?

bar(X,foo()) == apa()

bar(X,monkey(X,P,I)) == P

bar(Y,monkey(X,P,foo())) == bar(X,monkey(Y,P,foo()))
bar(X,monkey(Y,apa(),foo())) == apal()

monkey (X, P,monkey(X,Q,I)) == monkey(X,P,I)

monkey (Y, P,monkey(X,P,I)) == monkey(X,P,monkey(Y,P,I))

...and why does the highlighted law hold?




' ' tions
Get going with equd
for simple lists, quUeues and even

Formal
specifications

FOR

DUMMIED

Demystifies
everything from
algebraic specifications

AR e fe rence to abstraction
for the

Rest of Us!

FREE eTips at dummies.com*

Koen Claessen
John Hughes
Nick Smallbone




Regular expressions

Things that match strings.
abc matches the string “abc”
ab*c matches “abbbbbbbc”
a(blc)® matches “abccccbbc”
ab+ matches “abb” but not “a”

a”? matches only “a” or



Regular expression functions

run(string, string) - boolean
String to be Regular

Too unstructured!




Regular expression operators

run(string, regex) aAbgglean
star(regex) -
char(c - regex N

any

conc
choice(regex, regex) - regex

star(R) ->

ll(ll ++ R++ ll)*".
- regex

For example,
concat(char(%$a), star(char(s$b)))



Are two regular expressions equal?

Easiest way to find out: test on random input
First try:

observe(R, regex) -
re:run(..., R).



Are two regular expressions equal?

Easiest way to find out: test on random input
Second try:

observe(R, regex, S) -
re:run(S, R).

context() -
list(char()).



OK, let's try it out!

2> laws:laws(re siqg).

Classifying terms of depth 0... 2 terms....

2 classes.

Classifying terms of depth 1... 10 terms....

10 classes.

Classifying terms of depth 2... 78 terms.......
<<computer goes into a sulk>>

What could be wrong?



DEMO

re_sig.erl



The Killer regular expression

2> re:run("abc", "((a|())+|a)+").
<<computer goes into a sulk>>

For now: remove * and +.



Are two regular expressions equal?

Input data is too random!
re:run(“cpjsd-!1££%$", R).

N

probably
return

 nomatch

Test on strings of as and bs.




The story so far

Well, it all seems to work OK...
But what about *?

| don't want to fix PCRE

In principle we could avoid dodgy regular
expressions

Let's switch to a non-breaky regular expression
library instead :)



DEMO

nfa_re_sig.erl



It's a bug!

:S* = (R|S)*

RRRRﬁ/;EW (/£;;RSSR

RIS* = (R|S)*

L (J\\
o RSRRSSR

55555




What could we use this for

Understanding a library (fixed-point arithmetic)
Finding bugs

Extracting tests

Optimisation?



The paper

Lots of examples (Erlang and Haskell)

Case studies: binary heaps and fixed-point
arithmetic

How everything works



How does QuickSpec work?

Generate all expressions up to a given depth:

We assume that two expressions are equal until
we find a counterexamble.



How does QuickSpec work?

Pick some random values for testing:

Xs [], Ys

[1]



How does QuickSpec work?

Pick some random values for testing:

Xs = [1], Ys = []



How does QuickSpec work?

Produce some equations:

[1++][] =

Xs++[] =
[ ]++Xs

= XS
Xs




How does QuickSpec work?

Filter out the redundant equations (then print the

rest):
HH+—=—-——tF
Xs++[] == Xs
[ ]++Xs == Xs

This iIs the hard bit!



Caveats

Your functions need to be pure and terminating

You might need to include some auxiliary
functions

observe is quite delicate
observe(Q, queue) -
queue:len(Q).
in r(X,Q) “==" 1n r(Y,Q)
head(in r(X,Q)) /= head(in _r(Y,Q))
Should be able to spot this automatically.



What's to come next?

Testing imperative modules

Conditional equations:
I /=] ==>
set(I, X, set(J, Y, A)) ==
set(J, Y, set(I, X, A))
(demo: Haskell arrays)



