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What can we use log files for?

The ideal audit log files capture the essence of the 

system. Contains a permanent record of the most 

important key points of the life of the working 

system.

There are many other tool around to analyse them: 

mainly to provide statistics, make it more "human 

readable"
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Why Exago is different?

In Exago we have a different goal:

Use the audit logs to test your live system and your logs.

Even after a tested system is deployed and it is in production 

for years, from time to time there is a need to prove the 

system behaves correctly in specific cases, or an error needs to 

be located. The first attempt is to use the log files. We would 

like to ease this process with Exago.
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A solution

Exago: An audit log monitoring tool.

Prototype by Hans Svensson, Chalmers Univ.

Development by Erlang Training and Consulting Ltd.
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How to describe the expected behaviour?

� Using Prolog or some proprietary language is a solution, but 

needs time to learn ...

� Check it against a state machine!

� Simple yet powerful.

� By adjusting the granularity, we can check more complex 

properties as well ...
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Idea

� Reconstruct what happened and create a series abstract 

commands. During this process the dependencies and 

connections between the fields of log files can be checked.

� See if the system behaved properly, using some sort of model 

checking – building an abstract state machine for the system. 

Every log entry will represent an edge in the state machine.

� Keep the tool general enough to allow configuring different 

level of detail checks, creating different state machines from 

the state system logs. 
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How can we transform the logs to a state 

machine?

Lines in the log files → … → State machine

� Based on the content of one or more entries will be one edge in 

the state machine

� Entries in the log files needs to be grouped to form one 

execution instance of the model
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Terminology

� Transaction: 
� A set of events that describe a state change

� To be abstracted to a single command

� Session: 
� A series of transactions to be checked against a state machine

NOTE:  

� These terms depend on the level of detail,

� not necessary mean the same from the system's and tool's perspective.
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Available interfaces:

� Erlang record, 

� command line,

� GUI built on wxWidgets,

� (planned Emacs and Eclipse integration).
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Results so far

� Two industrial case studies, from a different perspective

� Production system for years: (TPSG) 
� Took approximately 2 day to create the model

� After spent several years on testing the system, we still managed to 

found bugs just by analysing log files!

� Using Exago as a tool of development (SMSC) 

� In progress ...

� Helping quality assurance
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To use Exago, you have to:

� Get some log files from the production system,

� Specify relations between the files and their formats,

� Provide abstraction and validation functions for the processing,

� Present an abstract model of the system as a state machine.
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Log files

Preconditions:

� must be CSV formatted (plans for supporting other formats as 

well),

� must provide „enough information”.

Exago specific:

� we specify a set of log files at a time using wildcards
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Log files
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Exago – configuration 

Giving the details of individual log files:

• Directory inside the given base one

• Filename prefix and suffix

• Transaction and session identifiers

• Abstract value

• Foreign keys
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Important Values for the analysis

� Timestamp

� Session id

� Transaction id

� Abstract value

Specify the values for the tool:

� Describe them using a list of integers denoting the positions in 

the CSV log files

� eg.: [3,11,5]

Copyright 2008

Relations
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Relations
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Abstraction

Parsed and resolved log entries 

→ aggregate and abstract →

Transactions

→ filter →

Filtered transactions

→ abstract and group →

Sessions

NOTE: Transaction abstraction and validation are optional
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State machine
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Output

� Generated HTML output,

� Errors and warnings are listed,

� Failed sessions are listed, failed command highlighted,

� Generated state machine with graphviz, 

with highlighted terminal state.
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What happens after the analysing the 

results?

� In optimal case the result show up no problems, so the system 

and logging is verified.

� If any problem was found, the reason needs to be find, it was 

in the logging procedure, or in the functional part of the 

system.
– Further knowledge can be involved by not just using the tools, but 

support engineers or developers

– Further detailed debugging using on-line tracing on the specific problem 

on the live system by onviso for example

� The found and fixed issue can result in a new unit or system 

test case, and can be used to test with continuous integration 

if the tool was used during the development phase
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Pros and cons

Main advantages:

� Don't need access to the live system

� Can analyse errors without reproducing it, 

just check the log entries at the time the failure occured

Disadvantages:

� Limited usability: logging must meet certain requirements

� The information is limited in the audit log files
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The “classic” elevator example

Modifications:

� Events are captured to file for analysis

� Unique id is generated for each event
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Deciding the model

We abstract out the buttons, the command queue and only 

care about what happened but not why.
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Exercise 1: Define the model in Exago

0. Generate some log files

�Start the elevator example with tracing:

� util:start_trace(1,3,3).

� Call an elevator to floor 2

� Send elevator 2 to floor 2

� Send elevator 3 to floor 3
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Log file format

1. Define the log file in the tool

�Only one file:

� Log.txt (or as set in the app file) 

� Format:

� Timestamp, EventId, Event, ElevatorId, [Parameters]
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Log file format

� ElevatorId → Session Id

� We don't have real sessions in this application

� EventId → Transaction Id



11/23/2009

4

Copyright 2009

Transaction abstraction

2. Define the abstraction functions

�Simple case: one event per transaction

� Trivial transaction abstraction function
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Transaction filtering

� Filtering out the events 

we don't take into account in our model
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Session abstraction

� Creating the abstract commands
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State machine

3. Define the state machine

�10 states for 3 elevators and 3 floors
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Interpreting the results

4. Run the tool and analyse the results

Take a look at one of the failed sessions:

{"2009-11-11 14:22:22:0089135","reset_to_1"}

{"2009-11-11 14:22:27:0713588","approaching_1"}

{"2009-11-11 14:22:29:0345272","approaching_2"}

{"2009-11-11 14:22:29:0956680","stopped_at_3"}

{"2009-11-11 14:22:29:0957266","open"}

{"2009-11-11 14:22:30:0960854","close"}

{"2009-11-11 14:22:31:0985493","approaching_3"}

{"2009-11-11 14:22:33:0621364","approaching_2"}

...
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Interpreting the results

The log files claims the elevator tries to approach floor 1...

{"2009-11-11 14:22:22:0089135","reset_to_1"}

{"2009-11-11 14:22:27:0713588","approaching_1"}

{"2009-11-11 14:22:29:0345272","approaching_2"}

{"2009-11-11 14:22:29:0956680","stopped_at_3"}

{"2009-11-11 14:22:29:0957266","open"}

{"2009-11-11 14:22:30:0960854","close"}

{"2009-11-11 14:22:31:0985493","approaching_3"}

{"2009-11-11 14:22:33:0621364","approaching_2"}

{"2009-11-11 14:22:34:0232767","stopped_at_1"}

{"2009-11-11 14:22:34:0233367","open"}

{"2009-11-11 14:22:35:0237494","close"}

{"2009-11-11 14:22:36:0261430","approaching_1"}

{"2009-11-11 14:22:37:0892879","approaching_2"}

{"2009-11-11 14:22:38:0504843","stopped_at_3"} ...
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Interpreting the results

… but we are already on floor 1!

{"2009-11-11 14:22:22:0089135","reset_to_1"}

{"2009-11-11 14:22:27:0713588","approaching_1"}

{"2009-11-11 14:22:29:0345272","approaching_2"}

{"2009-11-11 14:22:29:0956680","stopped_at_3"}

{"2009-11-11 14:22:29:0957266","open"}

{"2009-11-11 14:22:30:0960854","close"}

{"2009-11-11 14:22:31:0985493","approaching_3"}

{"2009-11-11 14:22:33:0621364","approaching_2"}

{"2009-11-11 14:22:34:0232767","stopped_at_1"}

{"2009-11-11 14:22:34:0233367","open"}

{"2009-11-11 14:22:35:0237494","close"}

{"2009-11-11 14:22:36:0261430","approaching_1"}

{"2009-11-11 14:22:37:0892879","approaching_2"}

{"2009-11-11 14:22:38:0504843","stopped_at_3"} ...
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Finding the cause

The abstract commands do not show the the cause of the 

error in this case, neither the experienced “symptoms”, but 

clearly indicates that the elevator does not match even with 

this basic state machine.
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Finding the cause

However, we can see there is something wrong when the 

elevator leaves the floor.
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Examining the code

The bug is in the elevator.erl:

moving({approaching, Floor}, {ENo, NewFloor}) -> %% Oops...

sys_event:approaching(ENo, NewFloor),

case scheduler:approaching(ENo, NewFloor) of

{ok, stop} →

sys_event:stopping(ENo),

{next_state, stopping, {ENo, Floor}};

{ok, continue} →

{next_state, moving, {ENo, Floor}};

_Other ->

sys_event:stopping(ENo),

{next_state, stopping, {ENo, Floor}}

end;
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Exercise 2: add time constraints

The elevator door should remain opened

for at least 3 seconds 

<=>

At least 3 second should pass between 

state „open” and  state „closed”
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Exercise 2: solution
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Thank you for your attention!

Any questions?
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