
11/23/2009

1

Exago

Aniko Nagyne Vig and Atilla Erdodi

Stockholm, 13th Nov 2009

Erlang Training and Consulting Ltd

Copyright 2008

What can we use log files for?

The ideal audit log files capture the essence of the

system. Contains a permanent record of the most

important key points of the life of the working

system.

There are many other tool around to analyse them:

mainly to provide statistics, make it more "human

readable"

11/23/2009

2

Copyright 2008

Why Exago is different?

In Exago we have a different goal:

Use the audit logs to test your live system and your logs.

Even after a tested system is deployed and it is in production

for years, from time to time there is a need to prove the

system behaves correctly in specific cases, or an error needs to

be located. The first attempt is to use the log files. We would

like to ease this process with Exago.

Copyright 2008

A solution

Exago: An audit log monitoring tool.

Prototype by Hans Svensson, Chalmers Univ.

Development by Erlang Training and Consulting Ltd.

11/23/2009

3

Copyright 2008

How to describe the expected behaviour?

� Using Prolog or some proprietary language is a solution, but

needs time to learn ...

� Check it against a state machine!

� Simple yet powerful.

� By adjusting the granularity, we can check more complex

properties as well ...

Copyright 2008

Idea

� Reconstruct what happened and create a series abstract

commands. During this process the dependencies and

connections between the fields of log files can be checked.

� See if the system behaved properly, using some sort of model

checking – building an abstract state machine for the system.

Every log entry will represent an edge in the state machine.

� Keep the tool general enough to allow configuring different

level of detail checks, creating different state machines from

the state system logs.

11/23/2009

4

Copyright 2008

How can we transform the logs to a state

machine?

Lines in the log files → … → State machine

� Based on the content of one or more entries will be one edge in

the state machine

� Entries in the log files needs to be grouped to form one

execution instance of the model

Copyright 2008

Terminology

� Transaction:
� A set of events that describe a state change

� To be abstracted to a single command

� Session:
� A series of transactions to be checked against a state machine

NOTE:

� These terms depend on the level of detail,

� not necessary mean the same from the system's and tool's perspective.

11/23/2009

5

Copyright 2008

Available interfaces:

� Erlang record,

� command line,

� GUI built on wxWidgets,

� (planned Emacs and Eclipse integration).

Copyright 2008

Results so far

� Two industrial case studies, from a different perspective

� Production system for years: (TPSG)
� Took approximately 2 day to create the model

� After spent several years on testing the system, we still managed to

found bugs just by analysing log files!

� Using Exago as a tool of development (SMSC)

� In progress ...

� Helping quality assurance

11/23/2009

6

Copyright 2008

To use Exago, you have to:

� Get some log files from the production system,

� Specify relations between the files and their formats,

� Provide abstraction and validation functions for the processing,

� Present an abstract model of the system as a state machine.

Copyright 2008

Log files

Preconditions:

� must be CSV formatted (plans for supporting other formats as

well),

� must provide „enough information”.

Exago specific:

� we specify a set of log files at a time using wildcards

11/23/2009

7

Copyright 2008

Log files

Copyright 2008

Exago – configuration

Giving the details of individual log files:

• Directory inside the given base one

• Filename prefix and suffix

• Transaction and session identifiers

• Abstract value

• Foreign keys

11/23/2009

8

Copyright 2008

Important Values for the analysis

� Timestamp

� Session id

� Transaction id

� Abstract value

Specify the values for the tool:

� Describe them using a list of integers denoting the positions in

the CSV log files

� eg.: [3,11,5]

Copyright 2008

Relations

11/23/2009

9

Copyright 2008

Relations

Copyright 2008

Abstraction

Parsed and resolved log entries

→ aggregate and abstract →

Transactions

→ filter →

Filtered transactions

→ abstract and group →

Sessions

NOTE: Transaction abstraction and validation are optional

11/23/2009

10

Copyright 2008

State machine

Copyright 2008

Output

� Generated HTML output,

� Errors and warnings are listed,

� Failed sessions are listed, failed command highlighted,

� Generated state machine with graphviz,

with highlighted terminal state.

11/23/2009

11

Copyright 2008

What happens after the analysing the

results?

� In optimal case the result show up no problems, so the system

and logging is verified.

� If any problem was found, the reason needs to be find, it was

in the logging procedure, or in the functional part of the

system.
– Further knowledge can be involved by not just using the tools, but

support engineers or developers

– Further detailed debugging using on-line tracing on the specific problem

on the live system by onviso for example

� The found and fixed issue can result in a new unit or system

test case, and can be used to test with continuous integration

if the tool was used during the development phase

Copyright 2008

Pros and cons

Main advantages:

� Don't need access to the live system

� Can analyse errors without reproducing it,

just check the log entries at the time the failure occured

Disadvantages:

� Limited usability: logging must meet certain requirements

� The information is limited in the audit log files

11/23/2009

1

Exago Exercises

Anikó Nagyné Víg and Atilla Erdődi

Stockholm, 13 Nov 2009

Erlang Training and Consulting Ltd

Copyright 2009

The “classic” elevator example

Modifications:

� Events are captured to file for analysis

� Unique id is generated for each event

11/23/2009

2

Copyright 2009

Deciding the model

We abstract out the buttons, the command queue and only

care about what happened but not why.

Copyright 2009

Exercise 1: Define the model in Exago

0. Generate some log files

�Start the elevator example with tracing:

� util:start_trace(1,3,3).

� Call an elevator to floor 2

� Send elevator 2 to floor 2

� Send elevator 3 to floor 3

11/23/2009

3

Copyright 2009

Log file format

1. Define the log file in the tool

�Only one file:

� Log.txt (or as set in the app file)

� Format:

� Timestamp, EventId, Event, ElevatorId, [Parameters]

Copyright 2009

Log file format

� ElevatorId → Session Id

� We don't have real sessions in this application

� EventId → Transaction Id

11/23/2009

4

Copyright 2009

Transaction abstraction

2. Define the abstraction functions

�Simple case: one event per transaction

� Trivial transaction abstraction function

Copyright 2009

Transaction filtering

� Filtering out the events

we don't take into account in our model

11/23/2009

5

Copyright 2009

Session abstraction

� Creating the abstract commands

Copyright 2009

State machine

3. Define the state machine

�10 states for 3 elevators and 3 floors

11/23/2009

6

Copyright 2009

Interpreting the results

4. Run the tool and analyse the results

Take a look at one of the failed sessions:

{"2009-11-11 14:22:22:0089135","reset_to_1"}

{"2009-11-11 14:22:27:0713588","approaching_1"}

{"2009-11-11 14:22:29:0345272","approaching_2"}

{"2009-11-11 14:22:29:0956680","stopped_at_3"}

{"2009-11-11 14:22:29:0957266","open"}

{"2009-11-11 14:22:30:0960854","close"}

{"2009-11-11 14:22:31:0985493","approaching_3"}

{"2009-11-11 14:22:33:0621364","approaching_2"}

...

Copyright 2009

Interpreting the results

The log files claims the elevator tries to approach floor 1...

{"2009-11-11 14:22:22:0089135","reset_to_1"}

{"2009-11-11 14:22:27:0713588","approaching_1"}

{"2009-11-11 14:22:29:0345272","approaching_2"}

{"2009-11-11 14:22:29:0956680","stopped_at_3"}

{"2009-11-11 14:22:29:0957266","open"}

{"2009-11-11 14:22:30:0960854","close"}

{"2009-11-11 14:22:31:0985493","approaching_3"}

{"2009-11-11 14:22:33:0621364","approaching_2"}

{"2009-11-11 14:22:34:0232767","stopped_at_1"}

{"2009-11-11 14:22:34:0233367","open"}

{"2009-11-11 14:22:35:0237494","close"}

{"2009-11-11 14:22:36:0261430","approaching_1"}

{"2009-11-11 14:22:37:0892879","approaching_2"}

{"2009-11-11 14:22:38:0504843","stopped_at_3"} ...

11/23/2009

7

Copyright 2009

Interpreting the results

… but we are already on floor 1!

{"2009-11-11 14:22:22:0089135","reset_to_1"}

{"2009-11-11 14:22:27:0713588","approaching_1"}

{"2009-11-11 14:22:29:0345272","approaching_2"}

{"2009-11-11 14:22:29:0956680","stopped_at_3"}

{"2009-11-11 14:22:29:0957266","open"}

{"2009-11-11 14:22:30:0960854","close"}

{"2009-11-11 14:22:31:0985493","approaching_3"}

{"2009-11-11 14:22:33:0621364","approaching_2"}

{"2009-11-11 14:22:34:0232767","stopped_at_1"}

{"2009-11-11 14:22:34:0233367","open"}

{"2009-11-11 14:22:35:0237494","close"}

{"2009-11-11 14:22:36:0261430","approaching_1"}

{"2009-11-11 14:22:37:0892879","approaching_2"}

{"2009-11-11 14:22:38:0504843","stopped_at_3"} ...

Copyright 2009

Finding the cause

The abstract commands do not show the the cause of the

error in this case, neither the experienced “symptoms”, but

clearly indicates that the elevator does not match even with

this basic state machine.

11/23/2009

8

Copyright 2009

Finding the cause

However, we can see there is something wrong when the

elevator leaves the floor.

Copyright 2009

Examining the code

The bug is in the elevator.erl:

moving({approaching, Floor}, {ENo, NewFloor}) -> %% Oops...

sys_event:approaching(ENo, NewFloor),

case scheduler:approaching(ENo, NewFloor) of

{ok, stop} →

sys_event:stopping(ENo),

{next_state, stopping, {ENo, Floor}};

{ok, continue} →

{next_state, moving, {ENo, Floor}};

_Other ->

sys_event:stopping(ENo),

{next_state, stopping, {ENo, Floor}}

end;

11/23/2009

9

Copyright 2009

Exercise 2: add time constraints

The elevator door should remain opened

for at least 3 seconds

<=>

At least 3 second should pass between

state „open” and state „closed”

Copyright 2009

Exercise 2: solution

11/23/2009

10

Copyright 2009

Thank you for your attention!

Any questions?

	Exago_Tutorial
	Exago_exercises

