
Erlang

The Common Test FrameworkThe Common Test FrameworkThe Common Test FrameworkThe Common Test FrameworkThe Common Test FrameworkThe Common Test FrameworkThe Common Test FrameworkThe Common Test Framework

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 3

1. Overview – what is Common Test

2. Test suites and test cases

3. Configuration files

4. Test results and logs

5. Common Test i/f- and library modules

6. Test execution

7. Code coverage analysis

8. Test specifications

9. Large Scale Testing

10. Event handling

11. Test case groups

12. In the pipeline

13. Documentation

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 4

The Common Test Framework

1. Overview – what is Common Test?

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 5

Common Test provides:

• Possibility to run test suites automatically on local and remote targets.

• HTML progress and result logs.

• Test suite templates and support libraries.

• Support for large scale testing.

• Event handler interface for integration with other programs.

What is the Common Test framework?

• A portable test server for black-box testing (function and

system testing) target nodes of any type.

• A practical tool for white-box testing OTP applications and

Erlang programs.

Common Test

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 6

Regression testing

Common Test is suitable for

regression testing:

• Automated execution of test suite programs

(no operator interaction required during test).

• Test progress and result logs are printed to file

(on HTML format).

• Flexible test specification.

• Support for running multiple independent test sessions in parallel.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 7

Testing through O&M interfaces

CLI requests (telnet,ssh)

Instrument Target Nodes

Corba/Snmp requests

Test programs executed by

Common Test can connect to

the target system via ordinary

O&M interfaces.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 8

Parallel connections

The possibility to handle parallel

connections - many of them if necessary -

is an important strength of Common Test!

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 9

Computer

Erlang Test Server

CT

framework

Support

Libraries

Erlang run-time system

Test Target Nodes
Operating System

Common Test implementation structure

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 10

Support libraries

Any of the following libraries may be used (in any combination):

• CT support libraries for general protocols (e.g. FTP, SNMP, etc).

• Erlang/OTP libraries.

• Specific test object libraries (test ports).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 11

Test case execution

CT worker
process

case A
test case A

returns ok

Log file

”Successful”

CT worker

exits normally

1 2

CT worker
process

case B
test case B fails

because of Reason

CT worker

crashes:

{’EXIT’,Reason}

”Failed: Reason”

case A

case B

1

2

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 12

Erlang as language for test programs

• Declarative, high-level, language with dynamic type system:

= Short, concise, test code.

= Quick to implement, very little overhead.

= Easy to read and maintain.

• Dynamic code loading (no static linking of modules) +
Common Test auto-compilation feature:

= Simple compilation and loading of test suites and

other support library modules.

• Support for concurrent programming built into the
language and the runtime system.

= Handle parallel connections.

= Scalability.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 13

Erlang as language for test programs (cont.)

• Pattern matching expressions:

= Tests and pre/post-conditions can be expressed

as simple declarative one-liners. Example:

?SUCCESS = perform_operation(Conn, Op)

• Erlang, a small general-purpose language:

= Short time to learn enough to start working with test suite

development and maintenance (especially with existing

programming-knowledge and experience).

= Great flexibility when writing test programs.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 14

Parallel execution

• Relevant testing of SUT that should be able to handle communication and

events on multiple interfaces in parallel.

• Implementations of test programs where the possible numbers of available

connections (and traffic) used in test can be extended easily as the SUTs

mature and/or more SUTs and instruments are added over time.

A powerful feature of Common Test is its support

for (and use of) parallel execution and communication.

This is a very important and useful test server characteristic, and is
something Common Test “gets for free”, being an Erlang application.

This provides for, e.g:

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 15

Parallel execution (cont.)

• Open and control arbitrary numbers of connections to arbitrary numbers of SUTs and
instruments and handle traffic on these connections concurrently (asynchronously, or
synchronously without blocking traffic on other connections).

• Use concurrency in test cases at will to solve any parallel problems, or to increase
performance of operations.

• Parallel execution of independent test cases (to save time or to verify that parallel
stimuli is handled correctly by the SUT).

• Common Test relies on concurrency (and error handling mechanisms) for various
operations such as:

– Running test cases on dedicated processes to avoid dependencies.

– Setting timers and generating timeouts for executing or hanging test cases.

– Determining the success or failure of test cases.

Parallel execution of code is used in many different

scenarios in the Common Test based framework:

?

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 16

The Common Test Framework

2. Test suites and Test cases

ok

fail

skip

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 17

The test suite

The test suite is a callback module that must comply with a defined

test server interface. This is documented in the common_test part

of the Common Test Reference Manual.

For example, a test suite must export the function all/0 which

returns a list of all test cases in the module.

The header file ct.hrl must be included in all test suite files.

(This header file may also be included in library modules that the

test suites use).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 18

The test suite callback module

read test info

log info

read test config

execute test

log progress/results

…

all() ->

Tests

init_per_suite(…) ->

Config

init_per_testcase(…) ->

Config

testcase(…) ->

…

Tests

Confi
g

Config

Result

Common Test
Test suite callback module

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 19

Test suite execution

init_per_suite

end_per_suite

init_per_suite/1 is called as the first test case in the suite.

It typically contains initializations common for all test cases

in the suite (operations that should only be done once).

end_per_suite/1 is called as the last test case in the suite.

This function should clean up after init_per_suite.

init_per_testcase/2 is called before each test case in the suite.

It typically contains initializations which must be done for

each test case.

end_per_testcase/2 is called after each test case is

completed, giving a possibility to clean up.

init_per_testcase

testcase1

end_per_testcase

init_per_testcase

testcase2

end_per_testcase

init_per_testcase

testcaseN

end_per_testcase

… …

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 20

Test case function

For each test case in the list returned from all/0, the test

server calls a function with the same name and with one

argument:

TestCaseName(Config)

• Config is the runtime configuration data.

• A test case is considered successful if it returns to the caller.

• A failed test case is one that crashes (or exits on purpose).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 21

Test case configuration

• The test case function takes one argument, Config, which contains

runtime configuration data (such as priv_dir and data_dir).

testcase_name(Config) ->

…

ok.

• In the functions init_per_suite and init_per_testcase it is possible

to add your own configuration data ({Key,Value} tuples) to Config.

init_per_suite(Config) ->

{ok,Handle} = ct_telnet:open(unix_telnet, telnet),

NewConfig = [{telnet_handle,Handle} | Config], % key = atom()

NewConfig.

• All config items can be extracted using the ?config macro, e.g:

PrivDir = ?config(priv_dir, Config)

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 22

Test suite info function

The test suite info function, suite/0, can be used in a test suite module to set

the default values for various properties and perform initial assertions.

suite() -> [{timetrap,{minutes,8}},

{require,{node,[name]}}].

Note: Property values set by suite/0 can be overridden by individual testcases if

necessary.

timetrap specifies how long a test case may run before it’s aborted by the

test server (the default time limit is 30 min). The value infinity disables the

timetrap.

require is used to check data in configuration files (details later).

Other options that may be specified are: userdata, stylesheet,

silent_connections. (See the CT User’s Guide for info).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 23

Test case info function

For each test case function there can be an additional test case info function which

has the same name as the test case, but no arguments.

The test case info function returns key-value tuples that specify various properties

regarding the test case or perform assertions.

Can be used to override properties set by the suite/0 function.

Predefined attributes are: timetrap, require, userdata, stylesheet

and silent_connections. Other optional {Key,Value} tuples (where

Key is always an atom) may be added later.

testcase_name() ->

[% Max time for test case execution before abortion.

{timetrap, {seconds,60}},

% Configuration variables required by the test case

{require, myvariable}

].

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 24

Test suite example

-module(db_data_type_SUITE).

-include(”ct.hrl").

%% Test server callbacks

-export([suite/0, all/0, init_per_suite/1, end_per_suite/1,

init_per_testcase/2, end_per_testcase/2]).

%% Test cases

-export([string/1, integer/1]).

-define(CONNECT_STR, ”DSN=sqlserver;UID=alladin;PWD=sesame”).

suite() ->

[{timetrap,{minutes,1}}].

all() ->

[string, integer].

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 25

init_per_suite(Config) ->

{ok, Ref} = db:connect(?CONNECT_STR, []),

TableName = db_lib:unique_table_name(),

[{con_ref, Ref },{table_name, TableName}| Config].

end_per_suite(Config) ->

Ref = ?config(con_ref, Config),

db:disconnect(Ref),

ok.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 26

init_per_testcase(Case, Config) ->

Ref = ?config(con_ref, Config),

TableName = ?config(table_name, Config),

ok = db:create_table(Ref, TableName, table_type(Case)),

Config.

end_per_testcase(_Case, Config) ->

Ref = ?config(con_ref, Config),

TableName = ?config(table_name, Config),

ok = db:delete_table(Ref, TableName),

ok.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 27

string(Config) ->

insert_and_lookup(dummy_key, ”Dummy string”, Config).

integer(Config) ->

insert_and_lookup(dummy_key, 42, Config).

insert_and_lookup(Key, Value, Config) ->

Ref = ?config(con_ref, Config),

TableName = ?config(table_name, Config),

ok = db:insert(Ref, TableName, Key, Value),

[Value] = db:lookup(Ref, TableName, Key),

ok = db:delete(Ref, TableName, Key),

[] = db:lookup(Ref, TableName, Key),

ok.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 28

It is possible to skip certain test cases, for example if you know beforehand that a

specific test case fails. This might be functionality which isn't yet implemented, a

bug that is known but not yet fixed or e.g. some functionality which isn't applicable

for a specific version of the target software.

There are several different ways to state that a test case should be skipped:

• Returning {skip,Reason} from the init_per_testcase/2 or

init_per_suite/1 functions.

• Returning{skip,Reason} from the test case function (which means the

function is called and that the author needs to make sure the actual test is not

executed).

When a test case is skipped, it will be noted as SKIPPED in the HTML log.

Skipping test cases

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 29

Skipping test cases (cont.)

Test cases can also be skipped because something went wrong:

• If init_per_suite fails, all test cases in the test suite will be

skipped, including end_per_suite.

• If init_per_testcase crashes, the test case itself is skipped

including end_per_testcase.

• If required configuration variables are not found in any of the

configuration files, the test case is skipped (only true for tests

performed in suite/0 or the test case info function).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 30

The Common Test Framework

3. Configuration files

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 31

The Common Test framework uses configuration files to describe

data related to a test or a system under test.

Test/system configuration data makes it possible to change properties

without having to modify test suites. Examples of test/system

configuration data:

• Addresses to the test plant or other instruments

• Identities

• Names of files needed by the test

• Names of programs that should be executed by the test

Configuration files

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 32

Configuration files (cont.)

A configuration file can contain any number of elements on the

form:

{Key,Value}.

where

Key = atom()

Value = term() | [{Key,Value}]

(Key is the name of the configuration variable).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 33

Configuration variables and require

One can within a test suite require (i.e. assert) that a variable exists in

a configuration file.

There are 3 ways to require a variable:

• Specify a require tuple in the suite/0 return list.

• Return a require tuple from the test case info function.

• Call ct:require/[1,2] from a test case.

In case of the first two, the test suite or test case is aborted if the require

statement fails. ct:require/[1,2], however, returns ok or

{error,Reason} and does not automatically abort the test case.

In the test case, the value of a variable may be read using the function:

ct:get_config/1/2/3.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 34

Configuration file example

{ftp, [{host,”134.138.177.105”},

{user,”testuser”},

{password,”123”}]}.

{url, ”http://134.138.177.105:8888/”}.

{install_script, unix_ws_install}.

Example of how to access configuration data

inside a test case:

FtpAddr = ct:get_config({ftp,host}),

URL = ct:get_config(url), …

Example of a configuration file:

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 35

Using configuration data for opening connections

There are two different methods for opening a connection

using the support modules in Common Test (e.g. ct_ftp,

ct_ssh or ct_telnet):

1. Using a configuration target name (an alias).

When a target name is used for referencing the configuration data for the

connection, the same name may be used as connection reference in the

subsequent calls (also for closing the connection). It’s only possible to

have one open connection for each name.

2. Using the configuration variable name (the key).

In this case the returned handle must be used as reference in all subsequent

calls (also for closing the connection). With this method it is possible to

open multiple connections identified by the same configuration data.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 36

The Common Test Framework

4. Test results and logs

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 37

Test results and logs

During the execution of a test suite, all information (incl. printouts to stdout) is

recorded in log files, stored in a unique directory:

<log_dir>/ct_run.<node>.<date>_<time>.

The result from each test case is printed to an individual test case log file.

An HTML file (index.html in the ct_run directory), shows you a summary after

every test run. From this page you can access an HTML file (suite.log.html)

that shows a status overview of the test suites and test cases. The latter file has a link

to every test case log file.

After every test run, a link to the test summary file is stored in a history file

(all_runs.html in the working directory).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 38

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 39

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 40

The test result index page

TopLevelDir.TestDir (all suites in TestDir executed)

TopLevelDir.TestDir:suites (specific suites were executed)

TopLevelDir.TestDir.Suite (all cases in Suite executed)

TopLevelDir.TestDir.Suite:cases (specific test cases were executed)

TopLevelDir.TestDir.Suite.Case (only Case was executed)

This file gives a short overview of all individual tests performed

in the same test run. The test names follows this convention:

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 41

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 42

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 43

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 44

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 45

Printouts from test cases

CT provides the following functions for printing information

from a test case:

ct:comment/1 % print string in comment field in HTML log file

ct:log/[1,2,3] % print to test case log file

ct:print/[1,2,3] % print to console

ct:pal/[1,2,3] % print both to log and console

Note that printouts to stdout, e.g. with io:format/2, are directed to the test case log

file during the test execution.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 46

HTML stylesheets

• Optional Common Test feature

• CSS file for customizing user printouts.

• Category mapped to CSS selector.

Example of declaration:

<style>

div.ct_internal { background:lightgrey; color:black }

div.default { background:lightgreen; color:black }

div.sys_config { background:blue; color:white }

div.sys_state { background:yellow; color:black }

div.error { background:red; color:white }

</style>

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 47

The Common Test Framework

5. Common Test i/f- and library modules

Co
m
m
on
 T
es
t

Co
m
m
on
 T
es
t

Co
m
m
on
 T
es
t

Co
m
m
on
 T
es
t

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 48

Common Test modules

Common Test consists of the following interface modules:

• ct - main user interface for the framework

• ct_master - support for large scale testing

• ct_ftp - CT interface to FTP client

• ct_rpc - CT interface to Erlang/OTP RPC

• ct_telnet - CT interface to Telnet client

• unix_telnet - ct_telnet callback for Unix host

• ct_snmp - CT interface to Erlang/OTP SNMP

• ct_ssh - CT interface to Erlang/OTP SSH/SFTP

from v1.4

(OTP R13A)

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 49

The ct module

The ct module provides the main interface for writing test

cases. This includes e.g:

• Functions for executing test cases.

• Functions for printing & logging.

• Functions for reading configuration data.

• Functions for terminating a test case with error reason.

• Functions for adding comments to the HTML overview page.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 50

The Common Test Framework

6. Test execution

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 51

The script run_test can be used for starting tests from a

Unix command line:

$ run_test -config <configfilenames> -dir <dirs>

$ run_test -config <configfilenames> -suite <suiteswithfullpath>

$ run_test -config <configfilenames> -suite <suitewithfullpath>

-case <casenames>

Examples:

$ run_test –config $CFGDIR/node.cfg –dir $TESTDIR/objX_test

$ run_test –config $CFGDIR/node.cfg –suite $TESTDIR/objY_test/objY_setup_SUITE

Test execution

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 52

Running from the Unix command line

Examples of other useful run_test flags:

• -logdir <dir>, specifies where the HTML log files are to be

written.

• -refresh_logs, refreshes the top level HTML index files.

• -silent_connections [conn_types], tells CT to suppress

printouts for specified connections (e.g. telnet).

• -stylesheet, for installing a CSS file.

• -cover, for performing code coverage tests.

• -include, to add include directories for test suite compilation.

For documentation about start flags, see the run_test reference manual page and

the Running Test Suites chapter in the User’s Guide.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 53

Running from an Erlang shell prompt

• ct:run(Dir)

• ct:run(Dir, Suite)

• ct:run(Dir, Suite, Cases)

• ct:step(Dir, Suite, Case)

Other (less flexible) test execution functions:

The test execution function:

ct:run_test(Opts)

takes the same input options as the run_test script,

but as tuples in a list.

Example:

1> ct:run_test([{logdir,”/ldisk/logdir”},

{dir,”my_test_obj”}]).

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 54

Running ct in interactive shell mode

You can start Common Test in an interactive shell mode. In this mode it is possible

to evaluate test expressions in an Erlang shell instead of having CT execute tests

automatically. Configuration data can be installed and used (required and retrieved)

in the shell just like in a test suite.

$> run_test -shell

$> run_test -shell -config <configfilenames>

If no config file is specified by means of “run_test –config”, you must explicitly run

ct:install/1 to install the config data you need for your tests (if any).

In an Erlang shell, the interactive CT shell mode can be toggled on/off by means of

calling the ct:start_interactive/0 and ct:stop_interactive/0 functions.

You can not start normal automated tests in a shell that has the interactive CT mode

enabled!

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 55

It’s possible to get the Erlang Debugger started

automatically and use its graphical interface to

investigate the state of the current test case and to

execute it step by step and/or set execution

breakpoints.

$ run_test -step [opts]

1> ct:run_test([{step,Opts},…]).

Step by step execution

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 56

The Common Test Framework

7. Code coverage analysis

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 57

Code coverage analysis

• Measure code coverage when testing Erlang applications.

• Simple access to the OTP Cover tool - CT handles starting,

compiling modules, analysing result, etc, automatically.

• Cover specification file to declare what modules to include.

• Posibility to import and export coverage data between tests.

• Code coverage results included with CT html logs.

• Start test with:

run_test –cover <CoverSpecFile>, or

ct:run_test([{cover,CoverSpecFile},…])

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 58

Code coverage analysis (cont.)

Example of a cover specification file:

{nodes, [n1@finwe,n2@aldor]}.

{import, [“cover0.data”]}.

{export, “cover1.data”}.

{level, overview}.

{incl_dirs_r, [“app1”,”app2”]}.

{excl_dirs, [“app1/priv”]}.

{excl_mods, [utils]}.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 59

The Common Test Framework

8. Test specifications

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 60

Test specifications

• Flexible way to specify tests.

• A sequence (arbitrary number) of Erlang terms:

configuration terms and test specification terms.

• Can be declared in a file or passed as a list.

• Enables skipping of test suites or cases.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 61

Test specification syntax

Config terms:

• {node, NodeAlias, Node}

• {config, ConfigFiles}

• {config, NodeRef, ConfigFiles}

• {alias, DirAlias, Dir}

• {logdir, LogDir}

• {logdir, NodeRef, LogDir}

• {event_handler, EventHandlers}

• {event_handler, NodeRef, EventHandlers}

• {cover, CoverSpecFile}

• {cover, NodeRef, CoverSpecFile}

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 62

Test specification syntax (cont.)

Test terms:

• {suites, DirRef, Suites}

• {suites, NodeRefs, DirRef, Suites}

• {cases, DirRef, Suite, Cases}

• {cases, NodeRefs, DirRef, Suite, Cases}

• {skip_suites, DirRef, Suites, Comment}

• {skip_suites, NodeRefs, DirRef, Suites, Comment}

• {skip_cases, DirRef, Suite, Cases, Comment}

• {skip_cases, NodeRefs, DirRef, Suite, Cases, Comment}

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 63

Test specification example
{logdir, "/home/test/logs"}.

{config, "/home/test/t1/cfg/config.cfg"}.

{config, "/home/test/t2/cfg/config.cfg"}.

{config, "/home/test/t3/cfg/config.cfg"}.

{alias, t1, "/home/test/t1"}.

{alias, t2, "/home/test/t2"}.

{alias, t3, "/home/test/t3"}.

{suites, t1, all}.

{skip_suites, t1, [t1B_SUITE,t1D_SUITE], "Not implemented"}.

{skip_cases, t1, t1A_SUITE, [test3,test4], "Irrelevant"}.

{skip_cases, t1, t1C_SUITE, [test1], "Ignore"}.

{suites, t2, [t2B_SUITE,t2C_SUITE]}.

{cases, t2, t2A_SUITE, [test4,test1,test7]}.

{skip_suites, t3, all, "Not implemented"}.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 64

Run using test specifications

In a UNIX shell:

run_test –spec <testspecs>

In an Erlang shell, use:

ct:run_test/1 or ct:run_testspec/1.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 65

The Common Test Framework

9. Large Scale Testing

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 66

Using Common Test for Large Scale Testing

Large scale automated testing requires running

multiple independent test sessions in parallell.

This may be accomplished by running a number

of Common Test nodes on one or more hosts,

testing different target systems.

Configuring, starting and controlling the test

nodes independently can be a cumbersome

operation.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 67

Using Common Test for Large Scale Testing

Common Test Master

A master test node component that aids automated

Large Scale Testing.

CT Master handles central configuration and control

in a system of distributed CT host nodes.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 68

Using Common Test for Large Scale Testing

ct_master@masterhost

ct1@host1

SUT1

test result

LOGS

ct2@host2

SUT2

test result

LOGS

ctN@hostN

SUTN

test result

LOGS

…

MASTER LOGS
DB

test

control

test

result

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 69

Using Common Test for Large Scale Testing

Common Test Master API module: ct_master

• Start tests with ct_master:run/1 or ct_master:run/3.

• Use test specifications as input (test specifications for Large

Scale Testing are compatible with specifications created for single

host node tests - and the other way around!)

• Add or remove host nodes dynamically at runtime.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 70

The Common Test Framework

10. Event handling

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 71

Event handling

Plug in an event handler to receive event notifications

continously during a test session.

Examples of notifications:

• when a test case starts and stops

• current count of succeeded, failed and skipped cases

Can be used e.g. to log progress and results on other format than

HTML, implement test system supervision, or to save statistics

to a database for report generation.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 72

Event handling (cont.)

The CT event handler is based on the OTP event manager

concept and gen_event behaviour. The CT user implements the

event handler callback module, which should include

ct_event.hrl.

The event handler receives #event{name, node, data}

records from the CT server. The events are documented in the

Event Handling chapter in the User’s Guide (and also in the

ct_event.erl module).

Event handlers (any number) can be plugged in on regular CT

nodes as well as on a CT Master node.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 73

The Common Test Framework

11. Test case groups

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 74

Test case groups
- Set of test cases.

- Possibility to nest groups (and pass Config to sub-groups).

- Group execution properties (possibly combined):

parallel - parallel execution of test cases

sequence - sequence of test cases

shuffle | {shuffle,Seed} - random order of test cases

{Repeat,N} - repetition of group N times or until success or failure

of any case or all cases

(Repeat = repeat | repeat_until_all_ok | repeat_until_all_fail |

repeat_until_any_ok | repeat_until_any_fail)

- Calls to configuration functions init_per_group/2 and

end_per_group/2 before and after execution of each group.

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 75

Test case groups (cont.)

Groups are declared with function groups/0:

groups() ->

[{NameOfGroup1, Properties1, TestCasesAndSubGroups1},

{NameOfGroup2, Properties2, TestCasesAndSubGroups2},

…

{NameOfGroupN, PropertiesN, TestCasesAndSubGroupsN}].

Groups are ordered with test cases in the all/0 list:

all() -> TestCasesAndGroups

%% TestCasesAndGroups = [TestCaseOrGroup, …]

%% TestCaseOrGroup = TestCase | {group,NameOfGroup}

%% TestCase = NameOfGroup = atom()

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 76

Test case groups (cont.)

Declaration of sub-groups:

• Alt 1

groups() ->

[{Group1, Props1, [{Group11, Props11, TCsAndGroups11},

{Group12, Props12, TCsAndGroups12}, …]},

…].

• Alt 2

groups() ->

[{Group1, Props1, [{group,Group11}, {group,Group12}, …]},

…,

{Group11, Props11, TCsAndGroups11},

{Group12, Props12, TCsAndGroups12},

…].

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 77

Test case groups (cont.)

Test case groups example:

...

init_per_group(group1, Config) ->

init_group1(Config);

init_per_group(group2, Config) ->

init_group2(Config);

init_per_group(_GroupName, Config) ->

Config.

end_per_group(_GroupName, _Config) ->

ok.

groups() -> [{group1, [parallel], [tc11,t12,tc13]},

{group2, [], [tc21,{group,group3},tc22,{group,group4}]},

{group3, [sequence,shuffle], [tc31,tc32,tc33]},

{group4, [{repeat,10},shuffle], [tc41,tc42,tc43]}].

all() -> [tc1, {group,group1}, tc2, tc3, {group,group2}].

...

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 78

The Common Test Framework

12. In the pipeline…

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 79

In the pipeline…

• Generators and parameterized test cases

• State machines as test suites and/or test cases

• (Better) Quickcheck integration

• Events as alternative logging mechanism

• …

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 80

The Common Test Framework

13. Documentation

Peter Andersson, Ericsson AB, Erlang/OTP2009-11-11The Common Test Framework: 81

file://<OTP_ROOT>/doc/index.html -> Tool Applications -> common_test

http://www.erlang.org/doc/index.html -> Tool Applications -> common_test

Common Test User’s Guide

Common Test Reference Manual

Common Test Man pages

Documentation

