http://www.erlang-factory.com

Erlang Extreme

Erlang Factory Lite - Erlang Day in Krakow

Piotr Kaleta, Michat Ptaszek, Michat Zajda

Agenda

" Multicore support
" Distribution

= Fault tolerance

= OTP behaviors

www.erlang-factory.com

Multicore support

" Erlang designed for:
— share-nothing architecture
— asynchronous message passing
— distribution transparency

" So:
— No mutexes
— no transaction memory
— race conditions only on the architecture level (no programming traps)
— apart from the Erlang VM itself

www.erlang-factory.com w

Multicore support

" Evolving from...
non-SMP VM

Erlang VM

FLi. quﬁmﬂ

Scheduler

www.erlang-factory.com

Multicore support
SMP VM in Erlang/OTP R13

" To...

Erlang VM
Scheduler #1 (KU UEUE

Scheduler #2 FUn QUEWE
—
o
y

N

[Scheduler #M (U qUens

www.erlang-factory.com

Multicore support

" Some benchmarks
— Speedup of “Big Bang” on Tilera Tile64 chip

1k processes, talking to each other

Spesdup

.
gle_gueue ————

Multiple 5 T
run queues i i
15,00 — : :

Speedup: Cia 043*N@ 32 core_s=§

10, 00 =

run queue

1 ! !
20, 00 #Schedulers 40, O B0, 00

www.erlang-factory.com

Multicore support

" Demo
e pmap on one core

e pmap on two cores

www.erlang-factory.com

Distribution

" Light-weighted processes

— 20M processes benchmark has been performed
- By UIf Wiger in 2005

— 300 bytes of overhead for each
— no shared state between them

" Transparent communication

— Sending message to the local process
* LocalPid ! Msg

— Sending message to the remote process
* RemotePid ! Msg

www.erlang-factory.com

Distribution

" epmd - Erlang Port Mapper Daemon

— maps symbolic nhode names to machine addresses
* NodeName@®Host — 192.168.1.10:12345

" Example:
— MneSIa distributed DBMS for highly scalable apps

Fast real-time key/value lookup.
* Complicated non real-time queries mainly for operation and maintenance.
» Distributed data due to distributed applications.
* High fault tolerance.
* Dynamic re-configuration.
* Complex objects.

www.erlang-factory.com w

Distribution

" Demo

e manager node sends to remote node task to execute

www.erlang-factory.com w

Fault tolerance

" |solation
— When something is going to crash, let it crash
— Crash is a regular way of handling errors

" Share nothing architecture

" No implicit synchronization
— Spawn always succeed
— Sending always succeed
— Fire and forget strategy

" Nodes and processes monitoring
" Supervision trees

" Distributed applications

www.erlang-factory.com

Erlang/OTP behaviors

" Formalizations of most common patterns

" Divide the code into two chunks:
— generic - provided by distribution - behavior module
— specific - provided by developer - callback module

" Including

— gen_server

— gen_fsm

— gen_event

— supervisor

— application

— release

— defined by user

www.erlang-factory.com

Erlang/OTP behaviors - gen_server

" Central server, arbitrary number of clients
" A way to make calls sequent
" Synchronous/asynchronous API

" Implementing callback functions for:
— initialization of the state
— handling calls
— handling casts
— handling other messages
— termination

www.erlang-factory.com

Erlang/OTP behaviors - gen_fsm

" Finite state machine
— If we are in state S and the event E occurs, we should perform action A
and make a transition to state §'

" Function per state
" Synchronous/asynchronous API

= All state events

www.erlang-factory.com w

Erlang/OTP behaviors - gen_event

" Generic event manager
— event manager - an Erlang process
— event handler - callback module

" Publisher/subscriber pattern

" Dynamic list of handlers

www.erlang-factory.com

Erlang/OTP behaviors - supervisor

" Process responsible for starting, monitoring and stopping its
child processes

" Tree structure

" Various restart strategies
— one_for_one 1
— one_for_all

— rest_for_one O -
" Maximum restart frequency (5 6 %

" Fault tolerant approach

et

www.erlang-factory.com w

Erlang/OTP behaviors - application

" Reusable component that can be started and stopped as a unit

" Described by application resource file containing
— Name
— Version
— Modules
— Dependencies
— Environment variables
— etc

" Can be started using application callback module

www.erlang-factory.com w

Erlang/OTP behaviors - release

" Ties several applications into one system

" Described by release resource file containing
— release name and version
— ERTS version
— list of applications (with their versions)

" Easily preparing target systems with boot scripts and release
packages

www.erlang-factory.com w

Erlang/OTP behaviors

| - Emokefile
[) |- LICEMWSE
u m | - Maokefile
G? () | —- Mhesia.nonodednohost
|-- bin
Y y | - erts-R.G6.5
e application structure example o
fopplication, eptic, [[-- Llib
Idescription, "Eptic Erlang Web application"l, | |- compiler-4.5.5
{vsh, "1.3"}, | - crvpto-1.5.3

{modules, [e_cache,e_cluster,e_conf,e_error, __ _
e_db_couchdb,e_db,e_db_nhesia, | l_EdE": B.7.6.2
e_dict,e_dispatcher,e_file,e_jzon,e_lang, |-- inets-5.8.12
e_mod_gen,e_mod_inets e_mod_yows,.e_multiport_inets,e_multip | - kernel-z.12.5

[-- mnesio-4.4.7

| - runtime_tools-1.7.3
|- zo=l-2.1.5.4

|- z=1-3.1A

|- ztdlib-1.15.5

| - tools-Z.6.2

|- xmerl-1.1.16

I
I
I
I
aws, |
eptic,e_session,e_wvalidator,e_component ,e_cache_ets,e_cache
Je_annotation,e_user_annototion,
e_logger, e_logger_wiewer, |
g_start]}, |
{opplications, [kernel, stdlib]l, |
{registered, []}, |
ferv, [
fupload_dir, "/tnp"}, |
I

{template_gxpander, wpart_xs), | -—- vaws-1.73
{template_root, “templates"}, - _
{node_type, single_node} I WIWE 1.88
1k [-- log
| fmod, {eptic, []3} |-- pipes
B B "— relegses

www.erlang-factory.com

Questions

www.erlang-factory.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

