
¡

Erlang Extreme
Erlang Factory Lite – Erlang Day in Kraków

Piotr Kaleta, Michał Ptaszek, Michał Zajda 

25 November 2009

http://www.erlang-factory.com



www.erlang-factory.com

Agenda

 Multicore support

 Distribution

 Fault tolerance

 OTP behaviors



www.erlang-factory.com

Multicore support

 Erlang designed for:
– share-nothing architecture
– asynchronous message passing
– distribution transparency

 So:
– no mutexes
– no transaction memory
– race conditions only on the architecture level (no programming traps)
– apart from the Erlang VM itself



www.erlang-factory.com

Multicore support

 Evolving from...



www.erlang-factory.com

Multicore support

 To...



www.erlang-factory.com

Multicore support

 Some benchmarks
– Speedup of “Big Bang” on Tilera Tile64 chip 

• 1k processes, talking to each other



www.erlang-factory.com

Multicore support

 Demo

• pmap on one core

• pmap on two cores



www.erlang-factory.com

Distribution

 Light-weighted processes 
– 20M processes benchmark has been performed

• By Ulf Wiger in 2005
– 300 bytes of overhead for each
– no shared state between them

 Transparent communication
– Sending message to the local process

• LocalPid ! Msg
– Sending message to the remote process

• RemotePid ! Msg



www.erlang-factory.com

Distribution

 epmd – Erlang Port Mapper Daemon
– maps symbolic node names to machine addresses

• NodeName@Host → 192.168.1.10:12345

 Example: 
– Mnesia: distributed DBMS for highly scalable apps

• Fast real-time key/value lookup.
• Complicated non real-time queries mainly for operation and maintenance.
• Distributed data due to distributed applications.
• High fault tolerance.
• Dynamic re-configuration.
• Complex objects.



www.erlang-factory.com

Distribution

 Demo

• manager node sends to remote node task to execute



www.erlang-factory.com

Fault tolerance

 Isolation
– When something is going to crash, let it crash
– Crash is a regular way of handling errors

 Share nothing architecture

 No implicit synchronization 
– Spawn always succeed
– Sending always succeed 
– Fire and forget strategy

 Nodes and processes monitoring

 Supervision trees

 Distributed applications



www.erlang-factory.com

Erlang/OTP behaviors

 Formalizations of most common patterns

 Divide the code into two chunks:
– generic – provided by distribution – behavior module
– specific – provided by developer – callback module

 Including
– gen_server
– gen_fsm
– gen_event
– supervisor
– application
– release
– defined by user



www.erlang-factory.com

Erlang/OTP behaviors - gen_server

 Central server, arbitrary number of clients

 A way to make calls sequent 

 Synchronous/asynchronous API

 Implementing callback functions for:
– initialization of the state
– handling calls
– handling casts
– handling other messages
– termination



www.erlang-factory.com

Erlang/OTP behaviors - gen_fsm

 Finite state machine
– If we are in state S and the event E occurs, we should perform action A 

and make a transition to state S'

 Function per state

 Synchronous/asynchronous API

 All state events



www.erlang-factory.com

Erlang/OTP behaviors - gen_event

 Generic event manager
– event manager – an Erlang process
– event handler – callback module

 Publisher/subscriber pattern

 Dynamic list of handlers



www.erlang-factory.com

Erlang/OTP behaviors - supervisor

 Process responsible for starting, monitoring and stopping its 
child processes

 Tree structure

 Various restart strategies
– one_for_one
– one_for_all
– rest_for_one

 Maximum restart frequency

 Fault tolerant approach



www.erlang-factory.com

Erlang/OTP behaviors - application

 Reusable component that can be started and stopped as a unit

 Described by application resource file containing
– Name
– Version
– Modules
– Dependencies
– Environment variables
– etc

 Can be started using application callback module



www.erlang-factory.com

Erlang/OTP behaviors - release

 Ties several applications into one system

 Described by release resource file containing
– release name and version
– ERTS version
– list of applications (with their versions)

 Easily preparing target systems with boot scripts and release 
packages



www.erlang-factory.com

Erlang/OTP behaviors

 Demo

• application structure example



www.erlang-factory.com

Questions

?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

