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Multicore support

 Erlang designed for:
– share-nothing architecture
– asynchronous message passing
– distribution transparency

 So:
– no mutexes
– no transaction memory
– race conditions only on the architecture level (no programming traps)
– apart from the Erlang VM itself
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Multicore support

 Evolving from...
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Multicore support

 To...
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Multicore support

 Some benchmarks
– Speedup of “Big Bang” on Tilera Tile64 chip 

• 1k processes, talking to each other
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Multicore support

 Demo

• pmap on one core

• pmap on two cores
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Distribution

 Light-weighted processes 
– 20M processes benchmark has been performed

• By Ulf Wiger in 2005
– 300 bytes of overhead for each
– no shared state between them

 Transparent communication
– Sending message to the local process

• LocalPid ! Msg
– Sending message to the remote process

• RemotePid ! Msg
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Distribution

 epmd – Erlang Port Mapper Daemon
– maps symbolic node names to machine addresses

• NodeName@Host → 192.168.1.10:12345

 Example: 
– Mnesia: distributed DBMS for highly scalable apps

• Fast real-time key/value lookup.
• Complicated non real-time queries mainly for operation and maintenance.
• Distributed data due to distributed applications.
• High fault tolerance.
• Dynamic re-configuration.
• Complex objects.
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Distribution

 Demo

• manager node sends to remote node task to execute
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Fault tolerance

 Isolation
– When something is going to crash, let it crash
– Crash is a regular way of handling errors

 Share nothing architecture

 No implicit synchronization 
– Spawn always succeed
– Sending always succeed 
– Fire and forget strategy

 Nodes and processes monitoring

 Supervision trees

 Distributed applications
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Erlang/OTP behaviors

 Formalizations of most common patterns

 Divide the code into two chunks:
– generic – provided by distribution – behavior module
– specific – provided by developer – callback module

 Including
– gen_server
– gen_fsm
– gen_event
– supervisor
– application
– release
– defined by user
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Erlang/OTP behaviors - gen_server

 Central server, arbitrary number of clients

 A way to make calls sequent 

 Synchronous/asynchronous API

 Implementing callback functions for:
– initialization of the state
– handling calls
– handling casts
– handling other messages
– termination
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Erlang/OTP behaviors - gen_fsm

 Finite state machine
– If we are in state S and the event E occurs, we should perform action A 

and make a transition to state S'

 Function per state

 Synchronous/asynchronous API

 All state events
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Erlang/OTP behaviors - gen_event

 Generic event manager
– event manager – an Erlang process
– event handler – callback module

 Publisher/subscriber pattern

 Dynamic list of handlers
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Erlang/OTP behaviors - supervisor

 Process responsible for starting, monitoring and stopping its 
child processes

 Tree structure

 Various restart strategies
– one_for_one
– one_for_all
– rest_for_one

 Maximum restart frequency

 Fault tolerant approach
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Erlang/OTP behaviors - application

 Reusable component that can be started and stopped as a unit

 Described by application resource file containing
– Name
– Version
– Modules
– Dependencies
– Environment variables
– etc

 Can be started using application callback module
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Erlang/OTP behaviors - release

 Ties several applications into one system

 Described by release resource file containing
– release name and version
– ERTS version
– list of applications (with their versions)

 Easily preparing target systems with boot scripts and release 
packages
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Erlang/OTP behaviors

 Demo

• application structure example
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Questions

?
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