
The Erlang Stock
Exchange

• Kenny Stone

• Trading Systems

• C/C++, Ruby, Erlang

What is a stock
exchange?

• Electronically match buyers and sellers

• “Matching engine”

• Stock exchange = matching engine for
stocks

Matching Engine

Buy 10 @ 100 Sell 10 @ 100

Trade
10 @ 100

Matching Engine

Buy 10 @ 100 Sell 5 @ 100

Trade
5 @ 100

Buy 5 @ 100

Keeping the Book

Buy 10 @ 110

Buy 20 @ 105 Buy 10 @ 100

Keeping the Book

Buy 25 @ 110 Sell 10 @ 110

Trade
10 @ 110

Buy 10 @ 110

Buy 20 @ 105

Buy 10 @ 100

Buy 30 @ 105Buy 10 @ 105

Keeping the Book

10 @ 115

40 @ 110

 5 @ 95 10 @ 95

20 @ 100

25 @ 110

 5 @ 90

50 @ 110

15 @ 125

50 @ 120 5 @ 120

15 @ 11530 @ 115

Matching Engine

• Simple Price/Time Priority Algorithm

• Keep the book

• N actors

• Why Erlang?

• Price Levels

• Insert and Match Operations can happen
concurrently per price level

• Linked List of Price Levels

The Concurrent Engine

NEW ORDER:

The Concurrent Engine

25 @ 110 40 @ 110

20 @ 100

10 @ 95

 5 @ 90

 5 @ 95

50 @ 110

10 @ 95

TRADE - 65 @ 110

NEW ORDER:

The Concurrent Engine

25 @ 110 40 @ 110

20 @ 100

10 @ 95

 5 @ 90

 5 @ 95

50 @ 110

10 @ 9515 @ 10065 @ 110

The Concurrent Engine

Decision:
- Insert Buy
- Insert Sell
- Match Buy
- Match Sell

40 @ 110

 5 @ 95 10 @ 95

15 @ 100

25 @ 110

 5 @ 90

65 @ 110

15 @ 125

50 @ 120 5 @ 120

30 @ 115

 Order

The Concurrent Engine

BOOK

F
I
X

R
I
S
K

B
O

BOOK

The Concurrent Engine

The Concurrent Engine

BOOK

The Concurrent Engine

BOOK

F
I
X

R
I
S
K

B
O

F
I
X

R
I
S
K

B
O

Firm Risk

The Distributed Engine

BOOK

The Distributed Engine

BOOK

BOOK

BOOK

The
Distributed

Engine

Persist

Web
Services

Market
Data

By using Erlang,
I can build one and
scale to many

The Trading Industry

• High frequency, low latency

• μSeconds matter

• The critical path cannot be compromised

The Trading
Industry

ALGO

F
I
X

API

ALGO

F
I
X

API

Market Data

• Market Data Input,
Orders Output

• Critical path can be very
latency sensitive

• Need systems around
Algo engine

The Trading
Industry

ALGO

F
I
X

API

ALGO

F
I
X

API

Market Data

Soft Real Time

Reporting

Control

Reporting

Control

RISK

UI

WEB

Recovery

Persist

The Trading Industry

• Challenges of Erlang

• It’s very different.

• Customers aren’t going to ask for it.

• Developers don’t know anything about it.

• Software is about choosing the right tools.

• A business is about execution.

The Trading Industry

• What we’re building:

• Highly event driven systems

• Distributed systems

• Systems that scale

• Systems that are fault tolerant

Thanks

Kenny Stone
kstone@connamara.com

mailto:kstone@connamara.com
mailto:kstone@connamara.com

