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Refactoring

Refactoring means changing the design or structure of a
program ... without changing its behaviour.

Refactor

Test Kent o
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Soft-ware

There’s no single
correct design ...

... different options for
different situations.

Maintain flexibility as
the system evolves.

property based testing
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Generalisation and renaming

-nmodul e (test). -nodul e (test).

-export ([f/1]). -export ([f/1]).

add one ([HT]) -> add int (N, [HT]) ->
[H+1 | add _one(T)]; [HEN | add_int(N, T)];

add one ([]) ->[]. add int (N []) ->1[].

f(X) -> add_one(X). fF(X) ->add_int(1, X).

University of | (A
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Generalisation

-export([printList/1]). -export([printList/2]).
printList([HT]) -> printList(F [HT]) ->
io:format("~p\n",[H), F(H,
printList(T); printList(F, T);
printList([]) -> true. printList(F,[]) -> true.
printList([1,2,3]) printList(
fun(H ->
lo:format ("~p\n", [H)
end,
[1,2,3]).
TESt Uln(l_vomﬁ.otf (%m\putmg

property based testing



Refactoring tool support

Bureaucratic and

diffuse. EF
| el

Tedious and error III-——I.I
rone.
p o

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

University of | (»
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Refactoring = Transformation + Condition

Transformation Condition
Ensure change at all |s the refactoring
those points needed. applicable?
Ensure change at only WIll it preserve the
those points needed. semantics of the

module? the program?
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Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible ... but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

Te S t University of i
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Wrangler

Refactoring tool for Duplicate code
Erlang detection ...

Integrated into Emacs -+ and elimination

and Eclipse / ENIDE.  Testing / refactoring

Multiple modules "Similar" code

Structural, process, Identification

macro refactorings Property discovery

Test Kent
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Architecture of Wrangler

Program
Source
Code

Program
Renderer

Parser

Refactorer

AST

annotation
University of
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® Aquamacs File Edit Options Tuols Inspector QuickCheck Erlang Window Help “
800 | | =)

Rename Variable Name
Rename Function Name

Rename Module Name

) SRS © brchep_vig_calls_SUITEerl - Ceneralise Function Definition
%% Code testing frequency.erl which is itself fro¢ Move Function to Another Module
%% Erlang Programming Function Extraction
%% Francecso Cesarini and Simon Thompson Fold Expression Against Function
®% 0'Reilly, 2088 ;
%%  http:/foreilly.com/catalog 9788596518189/ E:Elﬁ :;:S:EESHALQUE:;::ZH
¥%  hittp://www.erlangprogramming.org’ PP

%

{c) Francesco Cesarini and Simon TMmpsorﬂ Intradiice s MEichs

-module(frequency_tests). Fold Against Macro Definition

-include_lib{"eunit/include/eunit.hrl"™]).

-import(frequency, [start/@, stop/®, allocate/@, di Detect Identical Code in Current Buffer

Detect Identical Code in Dirs
Identical Expression Search

#% start() and stop() Detect Similar Code in Current Buffer
Detect Similar Code in Dirs

start_test - e :
s Similar Expression Search

{setup,

ool S O et oRially  Refactorings for QuickCheck b | ?

fun () - stop()’end, ipueg, Refactorings for QuickCheck e
?_assertMatch(true,start()) % make sure tl : :

;. Process Refactorings (Beta) [ ] Merge 2FORALLs

Normalise Record Expression eqc_statem State to Record

stopFirst_test_() -> Uide . CEETs eqc_fsm State to Record

{setup,
gen_fsm State to Record
fun (O -> ok end, % null startug . |
fun () -> ok end, % no cleanup 1 Customize Wrangler I ! '
?_assertError(badarg,stop(l) % stop before . cion -
1.
startStop_test_() -> = 4
{setup, a !
fun () -= start() end, % start normally! T 4
-:-- frequency tests.erl Top (7,46) (Erlang)
y




Eclipse File Edit BiEEG g0 Navigate Search Project Run  Window Hel w e (7 o o 0D
4 g ] P v
™
fano Rename module... {1 X_R M e5DK - /Users/simonthompson/Documents/workspace )
Rt b 2 .l = . B P
- Rename process... »
Cir = f;,:v Q- %v ; _ 1<) r&.ﬂesource
] ] 5 ] Rename function... @XRF K
(W Erla 2 T 0O M Rename variable...  @XRV = B[ &= outline 22 - O
"V -recy —~ d 5 =
SR Detect duplicated code... ALY
: Sf:::rnal_ﬂle -rect  Search expression... o export "
% For  Convert Function to process... 9. vacuird_delmition; i) R
Mave fiinchion 4NV E @ record_definition: disj
% (Fy Fold ex r’ESSiG.I-‘I. -~ @ record_definition: leaf
vy IJ SO @ record_definition: neg Pre
makel Extract .L” ction... @ forml/o
- Generalise function... & b
Tuple function parameters... ¢ mmicCon)id LR
makel __, & i}. @ makeDisj2 (L, R)
@ makelfff2 (L, R)
% Form -> Form @ makelmp/2 (L, R}
makeNeg(N) -= #neg{neg = N}. @ makeleaf/1 (L)
@ makeNeg/Ll (N)
% String -> Form ¥ @ printFormulafl
< ({conj, L, R}
makeLeaf(L) -» #leaf{leaf = L}. " © (disj L, RD '
% Derived constructors for == and <== @ (ineg,Np
& ({leaf, L}
% (Form,Form) -> Form ¥ @ showFormulafl
- e < {conj, L, R
makeImp{L, R} -> makeDisj(makeMeg{L), RJ. @ (disj, L, RY
% (Form,Form) -> Form & ({neg, N}
& i{leaf, L
makelfFFCL, E) -= makeConj{makeImp(l, R}, makeImp(H, L)). @ simplifyfl
) @ testlfO
% Print a formula to the output. @ test2/0
% Farm -> (O
sprintFormula({conj, L, R})} -=
io: format("("),
printFormulall),
io: format{" /AN, Ll
printFormulalR), ] h.-.
10: format(")");
O piptEorm ol Tdied ] D1y o h 3
(e JRIE =
] ¢ Writable Smart Insert 26:2 | H & B B (o (o @”n/;
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Duplicate code considered harmful

It's a bad smell ...

* Increases chance of bug propagation,
* Increases size of the code,

* Increases compile time, and,

* Increases the cost of maintenance.

But ... It's not always a problem.

University of | »
Te St Kent ‘ C\om\puﬁng

eeeeeeeeeeeeeeeeeeee



Clone detection

* The Wrangler clone detector
— relatively efficient

— no false positives

* User-guided interactive removal of clones.

* Integrated into development environments.

Test Kent &
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What Is ‘identical’ code?

variable+number
4 Y+

X+ 5

ldentical if values of literals and variables
ignored, but respecting binding structure.

University of | (»
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What Is ‘similar’ code?

X+Y

N

( X+3) +4 4+(5-(3*X))

The anti-unification gives the (most specific)
common generalisation.

University of | (»
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Detection

All clones in a project
meeting the threshold
parameters ...

... and their common
generalisations.

Default threshold:
> 5 expressions and
similarity of > 0.8.

Test

property based te:

Expression search

All instances of
expressions similar to
this expression ...

.. and their common
generalisation.

Default threshold:
> 20 tokens.

tyf ~\

Ken
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Similarity

Threshold: anti-unifier should be big
enough relative to the class members:

similarity = min_ , (size(AU)/size(E)))
where AU = anti-unifier(g,, ... ,E,).

Can also threshold length of expression
seguence, or number of tokens, or ... .

University of | »
Te St Kent ‘ C\om\puﬁng

property based testing



NS

Computing

Prolest™ Ko i

property based testing




Source Erlang Programs Clone Classes

S T

‘ Parse Program \ Formatting
AST
\ / Final Clones
Annotated AST (AAST) Candidates using
+ Anti-Unification

‘ AAST Generalisation \
Initial Clone Candidates

Generalised AAST |

v

Serialise and Hash AAST Hashed AAST—|  Clone Detection using
Suffix Tree

(
|
|
|
|
|
|
|
|
|
: AST Annotation
|
: Examination of Clone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v o o e e e o - - —— —— —— —— — — — — — — — — — — —— — = = = — —

Test |
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Source Erlang Programs Parse prog ram

PR I
‘ Parse Program \ Parse the program with modified
parser to ensure that location

AST - [ ] [ ] -
v Information (line, column) is
‘ AST Annotation \ iﬂClUded.

— between different program
AAST Generalisation ]
;'4 representations.
Generalised AAST

v Bypasses the Erlang pre-

‘ Serialise and Hash AAST processor.

N o o o o e e e e e e e e e e o e e — — — — — — —

. Annotated AST (AAST) This ensures that can map

N

Com\putmg
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Source Erlang Programs An n Otate AST

PR [
‘ Parse Program \ Resolve the use of identifiers to
their binding occurrences.

‘ Serialise and Hash AAST

N o o o o e e e e e e e e e e o e e — — — — — — —

| AST

i v L :

i AST Annotation Use location information to

| Identify occurrences.

: Annotated AST (AAST)

i v Erlang allows a variable to have
i ‘ AAST Generalisation \ multiple binding occurrences,

| Generalised AAST e.g. in different arms of a case
i v expression.

N

Com\putmg
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Source Erlang Programs General |Se AST
o l —————————————— o
i ‘ Parse Program \ Capture structural similarity
| - between expressions while
| v keeping a structural skeleton of
: ‘ AST Annotation \ the Original.
| Annotated ’iST (AAST) Replace certain subtrees with a
i ‘ AAST Generalisation \ placeholder
| Generalised AAST ... but only if sensible to do this,
| Y e.g. expressions including f uns
: M but not conditionals, patterns,
oo try..catch..,receive, etc.

N

Com\putmg
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Example of generalised code

foo(X) -> foo(X) ->

Y = ? =
case X of case ? of
one -> 12; ? -> 7
Q hers -> 196 ? -> 7
end, end,

X+Y, ?,

g(XxY).

Te St University of R
Kent | ..
erty based testing n Computing
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Source Erlang Programs Serlallse the AST

PR I
‘ Parse Program \ Pretty print generalised sub-
expression sequences and then

AST . » . .
\ serialise into a single sequence.
AST Annotation
A delimiter separates each sub-

v

. foo(X, Y) -> A = case ...
AAST Generalisation A = case X>Y of A + 37
true -> Z=1, --

| Annotated AST (AAST) expression sequence.

Generalised AAST X+ Y+ 7 Z=1
* fal se -> X+Y+ Z
Z = 2, - -
‘ Serialise and Hash AAST X+ Y -2 Z =2
end, X+Y-2
N e e A + 37.

N

Com\putmg
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Source Erlang Programs H aS h eXp reSS | O n S

PR I
‘ Parse Program \ Hash each expression, mapping
It to an 128 bit value, using non-

‘ Serialise and Hash AAST hash values

N o o o o e e e e e e e e e e o e e — — — — — — —

| AST _ .

| v clashing hash function.

: AST Annotation

| Expressions represented by
 Annotated ’iST (AAST) start / end positions in the

| — source code.

| ‘ AAST Generalisation \

| Generalised AAST Hash values stored in indexed
: v table - indexes smaller than

N

Com\putmg
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Build suffix tree Clone Classes

. root>|— Mississeps 00 | o ——— ? —————————— ) 1
Build a I s ssppS Formatting !
suffix tree o e
—PPI !
from the I I___PPIS Final Clones !
expression o | i
___s |
seguence. I | Examination of Clone |
| ---S--->[-~Sl---> | -—SSIPPI $ Candidates using :
I : :———PPI : Anti-Unification !
Clones are T - i
given by I I___PPI ; Initial Clone Candidates i
paths that s lpl$ | |
| | Clone Detection usin l
branch. s > Suffx Troe |
l-s o _______ ,’

property b-als:detgi.rE in(h,érﬁ% C\;m\puﬁng




Check clone classes Clone Classes

.............. S

Check a clone class for anti- Formatting |
unification. Will return i
°NO ClaSSGS, Final Tlones !
°one ClaSS’ or Examination of Clone :

- _ Candidates using :
* multiple sub-classes Anti-Unifioation :
each with the corresponding |
anti-unification function. initial Clone Candidates !
Results depend on the threshold [ Clone Detection using |
parameters. Suffix Tree i

N

Com\putmg
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Example: clone candidate

S1 = "This", S1 = "This", D1 = [1], D1 = [ X+1],
S2 =" 1is a", S2 = "is another ", D2 =[2], D2 = [5],
S3 = "string", S3 = "String", D3 = [ 3], D3 = [6],
[ S1, S2, S3] [ S3, S2, S1] [ D1, D2, D3] [ D3, D2, D1]
? = 2,
? = 2,
? =7,
[ 2,2, ?]
ry, T,
TESt Uln(l_gﬁ% CQom\putmg
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Example: clone from sub-sequence

S1 = "This",
S22 ="1is a"
S3 = "string",
[ S1, S2, S3]

Test

property based testing

S1 = "This",

S2 = "is another "
S3 = "String",

[ S3, S2, S1]

new fun( Newvar 1,
NewVar 2,
Newvar _3)
S1 = Newvar 1,
S2 = Newvar 2,
S3 = Newvar 3,
{S1, S2, S3} .

DL = [1],
D2 = [2],
D3 = [3],
[ D1, D2, D3]

->

DL = [X+1],
D2 = [3],
D3 = [6],
[ D3, D2, D1]

University of | A
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Example: sub-clones

S1 = "This", S1 = "This", DL = [1], DL = [ X+1],
S2 =" is a", S2 = "is another ", D2 = [2], D2 = [5],
S3 = "string", S3 = "String", D3 = [3], D3 = [6],
[ S1, S2, S3] [ S3, S2, S1] [ D1, D2, D3] [ D3, D2, D1]
new fun(Newvar 1, new fun(Newvar 1,
NewVar 2, NewVar 2,
Newvar 3) -> Newvar 3) ->
S1 = Newvar 1, S1 = Newvar 1,
S2 = Newar 2, S2 = Newar 2,
S3 = Newvar 3, S3 = Newvar 3,
[ S1, S2, S3] . [ S3, S2, S1] .

N
N
Computing

Test Kent
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Clone class output

Clone classes are reported in
two different orders

* the size of the clone class, and

e the size of the members of the
clone.

Together with each class is the
anti-unifier, rendered as an
Erlang function definition to cut
and paste into the program.

Clone Classes

.............. S

Formatting

Final Clones

Examination of Clone

Candidates using

Anti-Unification

Initial Clone Candidates

Clone Detection using

Suffix Tree

Test

property based testing

University of
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Why test code particularly?

Many people touch the code.

Write some tests ... write more by copy,
paste and modify.

Similarly with long-standing projects, with
a large element of legacy code.

University of | »
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“Who you gonna call?”

Can reduce by 20% just by aggressively
removing all the clones identified ...

... What results I1s of no value at all.

Need to call in the domain experts.

University of | »
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ERICSSON 2

SIP Case StUdy TAKING YOU FORWARD
Session Initiation
Protocol

L» Scanner | paer || Semantic
SIP message
manipulation allows Jb
rewriting rules to 1
transform messages. copems— | e | rh

Test by srm SUI TE. er |,

2658 LOC.
TE St Uln(]_gﬁ% cim‘putmg
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Reducing the case study

property based testing

o ~ W DN B

2658
2342
2231
2217
2216

© 00 N O

10

2218
2203
2201
2183
2149

11 2131
12 2097

13 2042

University of ‘ i
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Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

Test

property based testing

&Moo *erl-output®

O SECE NN

v

—

New Open Recent Undo Redo Cut Copy Paste Help
Similar detection finished with *** 43 *** clone(s) found.
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:196.4-202.71: This code h

as been cloned 15 times:
JUsers/simonthompson/Desktop/StockholmAug@9/ code/smm_SUITE.erl:3

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

JUsers/simonthompson/Desktop/StockholmAug®9/ code/smm_SUITE.erl:

JUsers/simonthompson/Desktop/StockholmAug®9/ code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/ code/smm_SUITE.erl:]

/Users/simonthompson/Desktop/StockholmAug@9/ code/smm_SUITE.erl:
/Users/simonthompson/Desktop/StockholmAug@9/ code/smm_SUITE,erl:1

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.,erl:2143

/Users/simonthompson/Desktop/StockholmAug®9d/code/smm_SUITE.erl: 228

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl : 2

The cloned expression/function after generalisation:

new_fun{) -
SetResult = ?SMM_IMPORT_FILE_BASIC{?SMM_RULESET_FILE_1, no),
?TRIAL(ok, SetResult),
AmountDfRuleSets = 7SMM_RULESET_FILE_1_COUNT,
70M_CHECK(AmountOfRuleSets, 7MP_BS, ets, info, [sbgRuleSetTable, size]),
P0M_CHECKCAmountDfRuleSets, ?5GC_BS, ets, info, [smmRuleSet, size]),
Amount0fRuleSets.

- ** *arl-gutput* 9% (237,0) (Fundamental Compilation)

0

University of
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Not step 1

*erl-putput®

MECRCON < W . v
The largest clone o o e s

. /Users/simonthompson/Desktop/StockholmAug@d/code/smm_SUITE.erl: 4= .28: This code
has 88 lines, and e e clored e
) JUsers/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl: . 4- 32

2 param ete rS fThe cloned expression/function after generalisation:

new_fun{NewVar_1, NewVar_2) -»
7COMMENTC
. NewVar_1, [1D,
But Wha‘t does |t RSSetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),
?TRIAL{ok, RSSetResult),
AmountOfRuleSets = 7SMM_RULESET_FILE_1_COUNT,
represe nt’? 70M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
" POM_CHECK AmountOfRuleSets, 75GC_BS, ets, info, [smmRuleSet, size]),
FilterStateAtom = notUsed,
FilterNamel =

. CreateFilterl = ?SMM_CREATE_FILTER(FilterNamel),
What to Ca_” |t’? 7TRIAL(ok, CreateFilterl),
{ok, FilterKeyl} = 7SMM_NAME_TO_KEY(smmFilter, FilterMamel),
FilterName?2 = .
CreateFilter? = 7SMM_CREATE_FILTER(FilterNameZ),
?TRIAL(ok, CreateFilter?),
BESt 1{0) Work fok, FilterKey2} = 7SWM_NAME_TO_KEY(smnFilter, FilterName2),
FilterState = ?SMM_FILTER_STATE(FilterStateAtom),
?0M_CHECK( [#sbgFilterTable{key=Filterkeyl,
bottom up_ sbgFilterName=FilterNamel, |
shgFilterState=FilterStatel}],
MP_BS, ets, lookup, [sbgFilterTable, FilterKeyl]), .
70M_CHECK( [#sbgFilterTable{key=FilterkeyzZ, v
%% fapl-gutput* 97% (2165,0) (Fundamental Compilation) |

Te St University of R
Kent | ..
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The general pattern

|dentify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So what’s the complication?

University of | »
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Step 3

23 line clone occurs;
choose to replace a
smaller clone.

Rename function
and parameters,
and reorder them.

new_fun() ->
{FilterKey1, FilterName1, FilterState, FilterKey2,
FilterName2} = create_filter_12(),
?0M_CHECK([#smmFilter{key=FilterKey1,
filterName=FilterName1,
filterState=FilterState,
module=undefined}],
?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
?0M_CHECK([#smmpFilter{key=FilterKey2,
filterName=FilterName2,
filterState=FilterState,
module=undefined}],
?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
?0M_CHECK([#sbgFilterTable{key=FilterKey1,
sbgFilterName=FilterName1,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
?0M_CHECK([#sbgFilterTable{key=FilterKey2,
sbgFilterName=FilterName2,

check filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
?0M_CHECK([#sbgFilterTable{key=FilterKey,
sbgFilterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Test

property based testing
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Steps 4, 5

2 variants of check filter exists in_sbgFilterTable ...

* Check for the filter occurring uniguely in the table: call to
ets:tab2list InStead of ets:lookup.

* Check a different table, replace sbgFilterTable by smmFilter.

* Don’t generalise: too many parameters, how to name?

check filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
?0M_CHECK([#sbgFilterTable{key=FilterKey,
sbgFilterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

N

Com\puﬁng

Test Kant
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Step 7

Different checks: 70M _CHECK vs ?CH_CHECK

code_is loaded(BS, om, ModuleName, false) ->

?0M_CHECK(false, BS, code, is_loaded, [ModuleName]).

code_is loaded(BS, om, ModuleName, true) ->

?0M_CHECK({file, atom_to_list(ModuleName)}, BS, code,
is_loaded, [ModuleName)]).

But the calls to 70M_CHECK have disappeared at step 6 ...
... a case of premature generalisation!

Need to inline code is loaded/3 to be able to use this ...

University of

Test Kent
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Step 10

¢ I ! new_fun(FilterName, NewVar_1) ->
WIdOWS and FilterkKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
%%Add rulests to filter

‘Orphans’ In Clone RuleSetNameA = "a",
RuleSetNameB = "b",

|dent|f|cat|0n . RuleSetNameC = "c",
RuleSetNameD = "d",
... 16 lines which handle the rules sets are elided ...
%%Remove rulesets

. . NewVar_1,
Avoid paSSIr]g {leal\évSStrﬁameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKeys}.
commands as
parametersr) new_fun(FilterName, FilterKey) ->

%%Add rulests to filter
RuleSetNameA ="a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",
AISO at Step 11 ’ ... 16 lines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

A

University of

Test Kent
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Steps 14+

Similar code detection (default params):
16 clones, each duplicated once.
193 lines in total: get 145 line reduction.

Reduce similarity to 0.5 rather than the
default of 0.8: 47 clones.

Other refactorings: data etc.

University of | »
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Property-based testing

Property-based testing will deliver more
effective tests, more efficiently.

* Property discovery

* Test and property evolution

* Property monitoring

* Analysing concurrent systems

University of | »
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Property discovery in Wrangler

Find (test) code that Example:

IS similar ... Test code from

... build a common Ericsson: different
abstraction media and codecs.
... accumulate the Generalisation to all
Instances medium/codec

... and generalise combinations.

the Instances.
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Systems test: FSM discovery

Use FSM to model Use +ve and -ve cases.
expected behaviour.

Test random paths
through the FSM to
test system function.

Extract the FSM from
sets of existing test
cases.
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Refactoring and testing

Refactor tests e.g.

* Tests into EUNIt tests.

* Group EUnit tests into a
single test generator.

* Move EUnit tests into a
separate test module.

* Normalise EUnIt tests.

* Extract setup and tear-
down into EUniIt fixtures.

Test

property based t

Respect test code In
EUNIt, QuickCheck
and Common Test ...

. and refactor tests
along with refactoring
the code itself.
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Next steps

Refine the notion of
similarity ...
... to take account of

Insert / delete in
command seqs.

Scaling up: look for
Incremental version;
check vs. libraries ...

property based testing

Refactorings of tests
and properties
themselves.

Extracting FSMs from
sets of tests.

Support property
extraction from ‘free’
and EUnNIt tests.
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Conclusions

Efficient clone detection possible on
medium-medium sized projects.

This supports improved testing ...
... but only with expert involvement.

There's a useful interaction between
refactoring and testing.
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