

Using Wrangler
to refactor Erlang
programs and tests

Simon Thompson, Huiging LI
Adam Lindberg, Andreas Schumacher

University of Kent, Erlang Solutions, Ericsson

property based testing

Overview

Refactoring Erlang in Wrangler

Clone detection and elimination
Implementation

Case study: SIP message manipulation

ProTest project: property-based testing

Test Kent S

property based testing Computing

NS

Computing

Prolest™ Ko i

property based testing

Refactoring

Refactoring means changing the design or structure of a
program ... without changing its behaviour.

Refactor

Test Kent o

e
property based testing Computing

Soft-ware

There’s no single
correct design ...

... different options for
different situations.

Maintain flexibility as
the system evolves.

property based testing

University of ‘ Q,
I(ent Com\putmg

Generalisation and renaming

-nmodul e (test). -nodul e (test).

-export ([f/1]). -export ([f/1]).

add one ([HT]) -> add int (N, [HT]) ->
[H+1 | add _one(T)]; [HEN | add_int(N, T)];

add one ([]) ->[]. add int (N []) ->1[].

f(X) -> add_one(X). fF(X) ->add_int(1, X).

University of | (A
TESt Kent ‘ C\orﬁputmg

property based testing

Generalisation

-export([printList/1]). -export([printList/2]).
printList([HT]) -> printList(F [HT]) ->
io:format("~p\n",[H), F(H,
printList(T); printList(F, T);
printList([]) -> true. printList(F,[]) -> true.
printList([1,2,3]) printList(
fun(H ->
lo:format ("~p\n", [H)
end,
[1,2,3]).
TESt Uln(l_vomﬁ.otf (%m\putmg

property based testing

Refactoring tool support

Bureaucratic and

diffuse. EF
| el

Tedious and error III-——I.I
rone.
p o

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

University of | (»
Te St Kent ‘ C\om\puting

property based testing

Refactoring = Transformation + Condition

Transformation Condition
Ensure change at all |s the refactoring
those points needed. applicable?
Ensure change at only WIll it preserve the
those points needed. semantics of the

module? the program?

University of | »
Te St Kent ‘ C\om\puﬁng

eeeeeeeeeeeeeeeeeeee

Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible ... but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

Te S t University of i
Kent &
property based testing n Computing

Wrangler

Refactoring tool for Duplicate code
Erlang detection ...

Integrated into Emacs -+ and elimination

and Eclipse / ENIDE. Testing / refactoring

Multiple modules "Similar" code

Structural, process, Identification

macro refactorings Property discovery

Test Kent

eeeeeeeeeeeeeeeeeeee Computing

Architecture of Wrangler

Program
Source
Code

Program
Renderer

Parser

Refactorer

AST

annotation
University of

Kent

A

A

Com\putmg

Test

property based testing

® Aquamacs File Edit Options Tuols Inspector QuickCheck Erlang Window Help “
800 | | =)

Rename Variable Name
Rename Function Name

Rename Module Name

) SRS © brchep_vig_calls_SUITEerl - Ceneralise Function Definition
%% Code testing frequency.erl which is itself fro¢ Move Function to Another Module
%% Erlang Programming Function Extraction
%% Francecso Cesarini and Simon Thompson Fold Expression Against Function
®% 0'Reilly, 2088 ;
%% http:/foreilly.com/catalog 9788596518189/ E:Elﬁ :;:S:EESHALQUE:;::ZH
¥% hittp://www.erlangprogramming.org’ PP

%

{c) Francesco Cesarini and Simon TMmpsorﬂ Intradiice s MEichs

-module(frequency_tests). Fold Against Macro Definition

-include_lib{"eunit/include/eunit.hrl"™]).

-import(frequency, [start/@, stop/®, allocate/@, di Detect Identical Code in Current Buffer

Detect Identical Code in Dirs
Identical Expression Search

#% start() and stop() Detect Similar Code in Current Buffer
Detect Similar Code in Dirs

start_test - e :
s Similar Expression Search

{setup,

ool S O et oRially Refactorings for QuickCheck b | ?

fun () - stop()’end, ipueg, Refactorings for QuickCheck e
?_assertMatch(true,start()) % make sure tl : :

;. Process Refactorings (Beta) [] Merge 2FORALLs

Normalise Record Expression eqc_statem State to Record

stopFirst_test_() -> Uide . CEETs eqc_fsm State to Record

{setup,
gen_fsm State to Record
fun (O -> ok end, % null startug . |
fun () -> ok end, % no cleanup 1 Customize Wrangler I ! '
?_assertError(badarg,stop(l) % stop before . cion -
1.
startStop_test_() -> = 4
{setup, a !
fun () -= start() end, % start normally! T 4
-:-- frequency tests.erl Top (7,46) (Erlang)
y

Eclipse File Edit BiEEG g0 Navigate Search Project Run Window Hel w e (7 o o 0D
4 g] P v
™
fano Rename module... {1 X_R M e5DK - /Users/simonthompson/Documents/workspace)
Rt b 2 .l = . B P
- Rename process... »
Cir = f;,:v Q- %v ; _ 1<) r&.ﬂesource
]] 5] Rename function... @XRF K
(W Erla 2 T 0O M Rename variable... @XRV = B[&= outline 22 - O
"V -recy —~ d 5 =
SR Detect duplicated code... ALY
: Sf:::rnal_ﬂle -rect Search expression... o export "
% For Convert Function to process... 9. vacuird_delmition; i) R
Mave fiinchion 4NV E @ record_definition: disj
% (Fy Fold ex r’ESSiG.I-‘I. -~ @ record_definition: leaf
vy IJ SO @ record_definition: neg Pre
makel Extract .L” ction... @ forml/o
- Generalise function... & b
Tuple function parameters... ¢ mmicCon)id LR
makel __, & i}. @ makeDisj2 (L, R)
@ makelfff2 (L, R)
% Form -> Form @ makelmp/2 (L, R}
makeNeg(N) -= #neg{neg = N}. @ makeleaf/1 (L)
@ makeNeg/Ll (N)
% String -> Form ¥ @ printFormulafl
< ({conj, L, R}
makeLeaf(L) -» #leaf{leaf = L}. " © (disj L, RD '
% Derived constructors for == and <== @ (ineg,Np
& ({leaf, L}
% (Form,Form) -> Form ¥ @ showFormulafl
- e < {conj, L, R
makeImp{L, R} -> makeDisj(makeMeg{L), RJ. @ (disj, L, RY
% (Form,Form) -> Form & ({neg, N}
& i{leaf, L
makelfFFCL, E) -= makeConj{makeImp(l, R}, makeImp(H, L)). @ simplifyfl
) @ testlfO
% Print a formula to the output. @ test2/0
% Farm -> (O
sprintFormula({conj, L, R})} -=
io: format("("),
printFormulall),
io: format{" /AN, Ll
printFormulalR),] h.-.
10: format(")");
O piptEorm ol Tdied] D1y o h 3
(e JRIE =
] ¢ Writable Smart Insert 26:2 | H & B B (o (o @”n/;

NS

Computing

Prolest™ Ko i

property based testing

Duplicate code considered harmful

It's a bad smell ...

* Increases chance of bug propagation,
* Increases size of the code,

* Increases compile time, and,

* Increases the cost of maintenance.

But ... It's not always a problem.

University of | »
Te St Kent ‘ C\om\puﬁng

eeeeeeeeeeeeeeeeeeee

Clone detection

* The Wrangler clone detector
— relatively efficient

— no false positives

* User-guided interactive removal of clones.

* Integrated into development environments.

Test Kent &

property based te Computing

What Is ‘identical’ code?

variable+number
4 Y+

X+ 5

ldentical if values of literals and variables
ignored, but respecting binding structure.

University of | (»
Te St Kent ‘ C\om\putmg

property based testing

What Is ‘similar’ code?

X+Y

N

(X+3) +4 4+(5-(3*X))

The anti-unification gives the (most specific)
common generalisation.

University of | (»
Te St Kent ‘ C\om\putmg

property based testing

Detection

All clones in a project
meeting the threshold
parameters ...

... and their common
generalisations.

Default threshold:
> 5 expressions and
similarity of > 0.8.

Test

property based te:

Expression search

All instances of
expressions similar to
this expression ...

.. and their common
generalisation.

Default threshold:
> 20 tokens.

tyf ~\

Ken

Cmptg

Similarity

Threshold: anti-unifier should be big
enough relative to the class members:

similarity = min_ , (size(AU)/size(E)))
where AU = anti-unifier(g,, ... ,E,).

Can also threshold length of expression
seguence, or number of tokens, or

University of | »
Te St Kent ‘ C\om\puﬁng

property based testing

NS

Computing

Prolest™ Ko i

property based testing

Source Erlang Programs Clone Classes

S T

‘ Parse Program \ Formatting
AST
\ / Final Clones
Annotated AST (AAST) Candidates using
+ Anti-Unification

‘ AAST Generalisation \
Initial Clone Candidates

Generalised AAST |

v

Serialise and Hash AAST Hashed AAST—| Clone Detection using
Suffix Tree

(
|
|
|
|
|
|
|
|
|
: AST Annotation
|
: Examination of Clone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v o o e e e o - - —— —— —— —— — — — — — — — — — — —— — = = = — —

Test |

property based testing Computing

Source Erlang Programs Parse prog ram

PR I
‘ Parse Program \ Parse the program with modified
parser to ensure that location

AST - [] [] -
v Information (line, column) is
‘ AST Annotation \ iﬂClUded.

— between different program
AAST Generalisation]
;'4 representations.
Generalised AAST

v Bypasses the Erlang pre-

‘ Serialise and Hash AAST processor.

N o o o o e e e e e e e e e e o e e — — — — — — —

. Annotated AST (AAST) This ensures that can map

N

Com\putmg

Test Kant

property based testing

Source Erlang Programs An n Otate AST

PR [
‘ Parse Program \ Resolve the use of identifiers to
their binding occurrences.

‘ Serialise and Hash AAST

N o o o o e e e e e e e e e e o e e — — — — — — —

| AST

i v L :

i AST Annotation Use location information to

| Identify occurrences.

: Annotated AST (AAST)

i v Erlang allows a variable to have
i ‘ AAST Generalisation \ multiple binding occurrences,

| Generalised AAST e.g. in different arms of a case
i v expression.

N

Com\putmg

Test Kant

property based testing

Source Erlang Programs General |Se AST
o l —————————————— o
i ‘ Parse Program \ Capture structural similarity
| - between expressions while
| v keeping a structural skeleton of
: ‘ AST Annotation \ the Original.
| Annotated ’iST (AAST) Replace certain subtrees with a
i ‘ AAST Generalisation \ placeholder
| Generalised AAST ... but only if sensible to do this,
| Y e.g. expressions including f uns
: M but not conditionals, patterns,
oo try..catch..,receive, etc.

N

Com\putmg

Test Kant

property based testing

Example of generalised code

foo(X) -> foo(X) ->

Y = ? =
case X of case ? of
one -> 12; ? -> 7
Q hers -> 196 ? -> 7
end, end,

X+Y, ?,

g(XxY).

Te St University of R
Kent | ..
erty based testing n Computing

prop

Source Erlang Programs Serlallse the AST

PR I
‘ Parse Program \ Pretty print generalised sub-
expression sequences and then

AST . » . .
\ serialise into a single sequence.
AST Annotation
A delimiter separates each sub-

v

. foo(X, Y) -> A = case ...
AAST Generalisation A = case X>Y of A + 37
true -> Z=1, --

| Annotated AST (AAST) expression sequence.

Generalised AAST X+ Y+ 7 Z=1
* fal se -> X+Y+ Z
Z = 2, - -
‘ Serialise and Hash AAST X+ Y -2 Z =2
end, X+Y-2
N e e A + 37.

N

Com\putmg

Test Kant

property based testing

Source Erlang Programs H aS h eXp reSS | O n S

PR I
‘ Parse Program \ Hash each expression, mapping
It to an 128 bit value, using non-

‘ Serialise and Hash AAST hash values

N o o o o e e e e e e e e e e o e e — — — — — — —

| AST _ .

| v clashing hash function.

: AST Annotation

| Expressions represented by
 Annotated ’iST (AAST) start / end positions in the

| — source code.

| ‘ AAST Generalisation \

| Generalised AAST Hash values stored in indexed
: v table - indexes smaller than

N

Com\putmg

Test Kant

property based testing

Build suffix tree Clone Classes

. root>|— Mississeps 00 | o ——— ? ——————————) 1
Build a I s ssppS Formatting !
suffix tree o e
—PPI !
from the I I___PPIS Final Clones !
expression o | i
___s |
seguence. I | Examination of Clone |
| ---S--->[-~Sl---> | -—SSIPPI $ Candidates using :
I : :———PPI : Anti-Unification !
Clones are T - i
given by I I___PPI ; Initial Clone Candidates i
paths that s lpl$ | |
| | Clone Detection usin l
branch. s > Suffx Troe |
l-s o _______ ,’

property b-als:detgi.rE in(h,érﬁ% C\;m\puﬁng

Check clone classes Clone Classes

.............. S

Check a clone class for anti- Formatting |
unification. Will return i
°NO ClaSSGS, Final Tlones !
°one ClaSS’ or Examination of Clone :

- _ Candidates using :
* multiple sub-classes Anti-Unifioation :
each with the corresponding |
anti-unification function. initial Clone Candidates !
Results depend on the threshold [Clone Detection using |
parameters. Suffix Tree i

N

Com\putmg

Test Kant

property based testing

Example: clone candidate

S1 = "This", S1 = "This", D1 = [1], D1 = [X+1],
S2 =" 1is a", S2 = "is another ", D2 =[2], D2 = [5],
S3 = "string", S3 = "String", D3 = [3], D3 = [6],
[S1, S2, S3] [S3, S2, S1] [D1, D2, D3] [D3, D2, D1]
? = 2,
? = 2,
? =7,
[2,2, ?]
ry, T,
TESt Uln(l_gﬁ% CQom\putmg

property based testing

Example: clone from sub-sequence

S1 = "This",
S22 ="1is a"
S3 = "string",
[S1, S2, S3]

Test

property based testing

S1 = "This",

S2 = "is another "
S3 = "String",

[S3, S2, S1]

new fun(Newvar 1,
NewVar 2,
Newvar _3)
S1 = Newvar 1,
S2 = Newvar 2,
S3 = Newvar 3,
{S1, S2, S3} .

DL = [1],
D2 = [2],
D3 = [3],
[D1, D2, D3]

->

DL = [X+1],
D2 = [3],
D3 = [6],
[D3, D2, D1]

University of | A

Kent

N
Computing

Example: sub-clones

S1 = "This", S1 = "This", DL = [1], DL = [X+1],
S2 =" is a", S2 = "is another ", D2 = [2], D2 = [5],
S3 = "string", S3 = "String", D3 = [3], D3 = [6],
[S1, S2, S3] [S3, S2, S1] [D1, D2, D3] [D3, D2, D1]
new fun(Newvar 1, new fun(Newvar 1,
NewVar 2, NewVar 2,
Newvar 3) -> Newvar 3) ->
S1 = Newvar 1, S1 = Newvar 1,
S2 = Newar 2, S2 = Newar 2,
S3 = Newvar 3, S3 = Newvar 3,
[S1, S2, S3] . [S3, S2, S1] .

N
N
Computing

Test Kent

property based testing

Clone class output

Clone classes are reported in
two different orders

* the size of the clone class, and

e the size of the members of the
clone.

Together with each class is the
anti-unifier, rendered as an
Erlang function definition to cut
and paste into the program.

Clone Classes

.............. S

Formatting

Final Clones

Examination of Clone

Candidates using

Anti-Unification

Initial Clone Candidates

Clone Detection using

Suffix Tree

Test

property based testing

University of

Kent

v o o e e e o - - —— —— —— —— — — — — — — — — — — —— — = = = — —

N

Com\puﬁng

NS

Computing

Prolest™ Ko i

property based testing

Why test code particularly?

Many people touch the code.

Write some tests ... write more by copy,
paste and modify.

Similarly with long-standing projects, with
a large element of legacy code.

University of | »
Te St Kent ‘ C\om\puﬂng

eeeeeeeeeeeeeeeeeeee

“Who you gonna call?”

Can reduce by 20% just by aggressively
removing all the clones identified ...

... What results I1s of no value at all.

Need to call in the domain experts.

University of | »
TESt Kent ‘ C\om\puting

property based testing

ERICSSON 2

SIP Case StUdy TAKING YOU FORWARD
Session Initiation
Protocol

L» Scanner | paer || Semantic
SIP message
manipulation allows Jb
rewriting rules to 1
transform messages. copems— | e | rh

Test by srm SUI TE. er |,

2658 LOC.
TE St Uln(]_gﬁ% cim‘putmg

property based testing

Reducing the case study

property based testing

o ~ W DN B

2658
2342
2231
2217
2216

© 00 N O

10

2218
2203
2201
2183
2149

11 2131
12 2097

13 2042

University of ‘ i
I(ent Com\puting

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

Test

property based testing

&Moo *erl-output®

O SECE NN

v

—

New Open Recent Undo Redo Cut Copy Paste Help
Similar detection finished with *** 43 *** clone(s) found.
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:196.4-202.71: This code h

as been cloned 15 times:
JUsers/simonthompson/Desktop/StockholmAug@9/ code/smm_SUITE.erl:3

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

JUsers/simonthompson/Desktop/StockholmAug®9/ code/smm_SUITE.erl:

JUsers/simonthompson/Desktop/StockholmAug®9/ code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/ code/smm_SUITE.erl:]

/Users/simonthompson/Desktop/StockholmAug@9/ code/smm_SUITE.erl:
/Users/simonthompson/Desktop/StockholmAug@9/ code/smm_SUITE,erl:1

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.,erl:2143

/Users/simonthompson/Desktop/StockholmAug®9d/code/smm_SUITE.erl: 228

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl : 2

The cloned expression/function after generalisation:

new_fun{) -
SetResult = ?SMM_IMPORT_FILE_BASIC{?SMM_RULESET_FILE_1, no),
?TRIAL(ok, SetResult),
AmountDfRuleSets = 7SMM_RULESET_FILE_1_COUNT,
70M_CHECK(AmountOfRuleSets, 7MP_BS, ets, info, [sbgRuleSetTable, size]),
P0M_CHECKCAmountDfRuleSets, ?5GC_BS, ets, info, [smmRuleSet, size]),
Amount0fRuleSets.

- ** *arl-gutput* 9% (237,0) (Fundamental Compilation)

0

University of

Kent

A

Com\putmg

Not step 1

*erl-putput®

MECRCON < W . v
The largest clone o o e s

. /Users/simonthompson/Desktop/StockholmAug@d/code/smm_SUITE.erl: 4= .28: This code
has 88 lines, and e e clored e
) JUsers/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl: . 4- 32

2 param ete rS fThe cloned expression/function after generalisation:

new_fun{NewVar_1, NewVar_2) -»
7COMMENTC
. NewVar_1, [1D,
But Wha‘t does |t RSSetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),
?TRIAL{ok, RSSetResult),
AmountOfRuleSets = 7SMM_RULESET_FILE_1_COUNT,
represe nt’? 70M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
" POM_CHECK AmountOfRuleSets, 75GC_BS, ets, info, [smmRuleSet, size]),
FilterStateAtom = notUsed,
FilterNamel =

. CreateFilterl = ?SMM_CREATE_FILTER(FilterNamel),
What to Ca_” |t’? 7TRIAL(ok, CreateFilterl),
{ok, FilterKeyl} = 7SMM_NAME_TO_KEY(smmFilter, FilterMamel),
FilterName?2 = .
CreateFilter? = 7SMM_CREATE_FILTER(FilterNameZ),
?TRIAL(ok, CreateFilter?),
BESt 1{0) Work fok, FilterKey2} = 7SWM_NAME_TO_KEY(smnFilter, FilterName2),
FilterState = ?SMM_FILTER_STATE(FilterStateAtom),
?0M_CHECK([#sbgFilterTable{key=Filterkeyl,
bottom up_ sbgFilterName=FilterNamel, |
shgFilterState=FilterStatel}],
MP_BS, ets, lookup, [sbgFilterTable, FilterKeyl]), .
70M_CHECK([#sbgFilterTable{key=FilterkeyzZ, v
%% fapl-gutput* 97% (2165,0) (Fundamental Compilation) |

Te St University of R
Kent | ..
property based testing n Computing

The general pattern

|dentify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So what’s the complication?

University of | »
Te St Kent ‘ C\om\puting

eeeeeeeeeeeeeeeeeeee

Step 3

23 line clone occurs;
choose to replace a
smaller clone.

Rename function
and parameters,
and reorder them.

new_fun() ->
{FilterKey1, FilterName1, FilterState, FilterKey2,
FilterName2} = create_filter_12(),
?0M_CHECK([#smmFilter{key=FilterKey1,
filterName=FilterName1,
filterState=FilterState,
module=undefined}],
?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
?0M_CHECK([#smmpFilter{key=FilterKey2,
filterName=FilterName2,
filterState=FilterState,
module=undefined}],
?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
?0M_CHECK([#sbgFilterTable{key=FilterKey1,
sbgFilterName=FilterName1,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
?0M_CHECK([#sbgFilterTable{key=FilterKey2,
sbgFilterName=FilterName2,

check filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
?0M_CHECK([#sbgFilterTable{key=FilterKey,
sbgFilterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Test

property based testing

A

AN

Com\putmg

University of

Kent

Steps 4, 5

2 variants of check filter exists in_sbgFilterTable ...

* Check for the filter occurring uniguely in the table: call to
ets:tab2list InStead of ets:lookup.

* Check a different table, replace sbgFilterTable by smmFilter.

* Don’t generalise: too many parameters, how to name?

check filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
?0M_CHECK([#sbgFilterTable{key=FilterKey,
sbgFilterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

N

Com\puﬁng

Test Kant

property based testing

Step 7

Different checks: 70M _CHECK vs ?CH_CHECK

code_is loaded(BS, om, ModuleName, false) ->

?0M_CHECK(false, BS, code, is_loaded, [ModuleName]).

code_is loaded(BS, om, ModuleName, true) ->

?0M_CHECK({file, atom_to_list(ModuleName)}, BS, code,
is_loaded, [ModuleName)]).

But the calls to 70M_CHECK have disappeared at step 6 ...
... a case of premature generalisation!

Need to inline code is loaded/3 to be able to use this ...

University of

Test Kent

property based testing

N
N
Computing

Step 10

¢ I ! new_fun(FilterName, NewVar_1) ->
WIdOWS and FilterkKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
%%Add rulests to filter

‘Orphans’ In Clone RuleSetNameA = "a",
RuleSetNameB = "b",

|dent|f|cat|0n . RuleSetNameC = "c",
RuleSetNameD = "d",
... 16 lines which handle the rules sets are elided ...
%%Remove rulesets

. . NewVar_1,
Avoid paSSIr]g {leal\évSStrﬁameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKeys}.
commands as
parametersr) new_fun(FilterName, FilterKey) ->

%%Add rulests to filter
RuleSetNameA ="a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",
AISO at Step 11 ’ ... 16 lines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

A

University of

Test Kent

property based testing

Com\puﬁng

Steps 14+

Similar code detection (default params):
16 clones, each duplicated once.
193 lines in total: get 145 line reduction.

Reduce similarity to 0.5 rather than the
default of 0.8: 47 clones.

Other refactorings: data etc.

University of | »
Te St Kent ‘ C\om\puﬂng

eeeeeeeeeeeeeeeeeeee

NS

Computing

Prolest™ Ko i

property based testing

Test

property based testing

Property-based testing

Property-based testing will deliver more
effective tests, more efficiently.

* Property discovery

* Test and property evolution

* Property monitoring

* Analysing concurrent systems

University of | »
Te St Kent ‘ C\om\puﬂng

eeeeeeeeeeeeeeeeeeee

Property discovery in Wrangler

Find (test) code that Example:

IS similar ... Test code from

... build a common Ericsson: different
abstraction media and codecs.
... accumulate the Generalisation to all
Instances medium/codec

... and generalise combinations.

the Instances.

University of | »
Te St Kent ‘ C\om\puﬁng

property based testing

Systems test: FSM discovery

Use FSM to model Use +ve and -ve cases.
expected behaviour.

Test random paths
through the FSM to
test system function.

Extract the FSM from
sets of existing test
cases.

rsity of \

Te st Ken

property based te:

Cmptg

Refactoring and testing

Refactor tests e.g.

* Tests into EUNIt tests.

* Group EUnit tests into a
single test generator.

* Move EUnit tests into a
separate test module.

* Normalise EUnIt tests.

* Extract setup and tear-
down into EUniIt fixtures.

Test

property based t

Respect test code In
EUNIt, QuickCheck
and Common Test ...

. and refactor tests
along with refactoring
the code itself.

rsity of | (A

Ken

Cmptg

Next steps

Refine the notion of
similarity ...
... to take account of

Insert / delete in
command seqs.

Scaling up: look for
Incremental version;
check vs. libraries ...

property based testing

Refactorings of tests
and properties
themselves.

Extracting FSMs from
sets of tests.

Support property
extraction from ‘free’
and EUnNIt tests.

University of
Kent

\

Com\puﬁng

Conclusions

Efficient clone detection possible on
medium-medium sized projects.

This supports improved testing ...
... but only with expert involvement.

There's a useful interaction between
refactoring and testing.

University of | »
Te St Kent ‘ C\om\puﬂng

eeeeeeeeeeeeeeeeeeee

http://www.cs.kent.ac.uk/projects/wrangler/

Te St University of R
Kent | ..
erty based testing n Computing

	PowerPoint Presentation
	Using Wrangler to refactor Erlang programs and tests
	Overview
	Introduction
	Refactoring
	Soft-ware
	Generalisation
	Slide 8
	Refactoring tool support
	Refactoring = Transformation + Condition
	Static vs dynamic
	Wrangler
	Architecture of Wrangler
	Slide 14
	Integration with ErlIDE
	Clone detection
	Duplicate code considered harmful
	Slide 18
	What is ‘identical’ code?
	What is ‘similar’ code?
	Detection Expression search
	Similarity
	Implementation
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Example of generalised code
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Example: clone candidate
	Example: clone from sub-sequence
	Example: sub-clones
	Slide 36
	SIP Case Study
	Why test code particularly?
	“Who you gonna call?”
	SIP case study
	Reducing the case study
	Step 1
	Not step 1
	The general pattern
	Step 3
	Steps 4, 5
	Step 7
	Step 10
	Steps 14+
	Going further
	Slide 51
	Property-based testing
	Property discovery in Wrangler
	Systems test: FSM discovery
	Refactoring and testing
	Next steps
	Conclusions
	http://www.cs.kent.ac.uk/projects/wrangler/

