The
Ideas in
Erlang

Joe Armstrong

Plan

* A bit of history
* 3 things missing
* 1 big mistake

* 2 good ideas

* 3 great ideas

Erlang

Mid life
crisis

1986 1996 1998 2000 2001 2010

E iy

1

a

n
g
&
om
m
1t
e
e

m
e
L
K)
[
will
&
e
cl

H
T
jif!ﬂ
1
IS
i
1C
) i :
i}ﬂr
mH:§
_ t@
1;5?‘
ﬁ:ll:lTE:.t
:'|.dlﬂ
551

J
og

1985 - 1998

‘opennoee” > coprot J 'UPEN_
¥ n ittitation threat "L}TM:-.
wars > ignored oy RS
: _, “Functional” *hide | » Ctimeto market” o
marketing *Declarative” : hl-dﬂ sk oy 'I"nl-‘ﬂrﬂp-mﬂhilitg" “ﬂﬁgﬂagg
“———Distribution > Tupes)
el JAM < e Ctandard
Technique D Beam ;ngp>> Etlang O7 >
- : ™
o | Prulug intorpretor - HF'T"E:’, APCA
Eark X6 ¥7 ¥¢ €9 90 91 .92 .9% .94 .05 0 07 .0F
goc Jﬁﬂg’—‘-& - : P
i . L [ollmora club ;_,gnmﬁfhi;;; M0 A
Usere w AT A *> Netsim > Cunmrm_ _ "secret >
Tk g Demal> ATM eergr
D (Ol 2 ﬁ - OTP
| |Erlﬂnp;§qgmm§*
Dev 9 4 10
Ueore /// 1 10 40 1000

Cupport 0,9 09 1,2 3 25 60

Timeline

* 1986-1989 - Productive. e 1998 - 2000 Mid life crisis
* 1989 - 1996 - Wars e 2001 - 2008 Continuous
+ 1996-1998 - Peace. slow growth.

« 2008 - Upturn.

Early

1985 - 1989

Timeline

- Programming POTS/LOTS/DOTS (1885)

- A Smalltalk model of POTS

- A telephony algebra (math)

- A Prolog interpretor for the telephony algebra
- T add processes to prolog

- Prolog is too powerful (backtracking)

- Deterministic prolog with processes

- "Erlang” Il (1986)

- Compiled to JAM code (1989)

Find a better way of
programming

1985 - "find better ways of programming telephony”
SPOTS - LOTS
SPOTS = SPC for POTS
SPC = Stored Program Control ("computer controlled"”)
POTS = Plain Ordinary Telephone Service

Write telephony in many different languages

No "plan” to make another
programming language

10

Pre history

AXE - programmed in PLEX

PLEX
Programming language for exchanges)
Proprietary
blocks (processes) and signals
in-service code upgrade

Eri Pascal

¢
ing ani
hrough
COnnEt-
RE
SEIZERE -

&

Fig. 11 AXE programming by FLEX

Phoning Philosopher's

Loy = !Ilﬂl L e B L

7. A Telephone Exchange Model in PARLOKG stale is an unbownd varishla which is beund o &

Our exchange is modelled, in Parleg, ns # sat of vilup in the Monager process sctivatson ns fildones:

coEmmunisiting parallel logie processed, a8

illustrated in the figure belew. Cemmumicotion ﬂ'llﬂﬂﬂljﬂﬂlﬂllﬂh—(ﬂ“iﬂmjﬁlﬂ'llllﬂ-r‘“-
hotwesn logle processes takes placs through From_k) ==

unidirectiosal chanmeds. A channel is repropented by get_statedfj Stalel, . .

an infnite stream of messages.

. which the varisble Slate geta o valus ta be baaznid
in the caller_proceds cosmmumicatin with ithe
monager. This sxample is simplified o bt foe
illustration purposes. In Lhe real program thens
are sxirn merging and forking processes o control
romeumicotion tofrom the manager.

An example of a fime dependint process is the
hot-Yirne mevice, The hot-line is o service providad by
the exchange in which il & phone is picked up, and if
mo dialing has started within a given time, the
gysterms automatically dials a predafined namsber.
Thia process is described i Parlog && folloes:

resoiuree_processiAi, lofi_hsokiFrom_%],
From_ k. To 5. To_Ml -

iRl :
stari_caliRi, From_5, From.M, Alarm,

The teleph t | B i $lop.cmd, Te_§, Te_Ml,
telephone sete are rapresonbed ¢ exbersnia
nenrocess (5181 each process (Bil communicates timer{zeme_time, Stop_cmd, Minrm].

Conclusion - Concurrent Logic
programming with channel Armstrong, EIShieWYv Virding

communication (1986)

12

The Telephony Algebra - (1985)

idle(N) means the subscriber N is idle
on(N) means subscribed N in on hook

+t(A, dial_tone) means add a dial tone to A

process(A, f) :- on(A), idle(A), ++(A dial-tone),
+d(A, []), -idle(A), +of(A)

Using this notation, POTS could be described using fifteen

rules. There was just one major problem: the notation only described
how one telephone call should proceed. How could we do this for
thousands of simultaneous calls?

13

The reduction machine - (1985)

A->BCD. We can interrupt this at any time

B-> x,D.

D->y.

C->z.

A >

B,C,D .

E'E'E'D A B.C, D = nonterminals

v.C.D XY,z = terminals

C,D

z,D To reduce X,...Y...

D If X is a nonterminal replace it by it's definition
Y If X is a terminal execute it and then do ...Y...

{

14

Aside - ferm rewriting
1S tail recursive

A->xYy,A

A /Ioop(X) ->
XY,A

" - loop(X).

XY,A
y.A
A

1988 - Interpreted Erlang

- 4 days for a complete re-

write

- 245 reductions/sec

- semantics of language
worked out

- Robert Virding joins the
"team"

& B F F F F F F N > B % F ¥ B & F X3 B =

[T T T T

"

erlang pl

SHOME/erlang.pra
Copyright (2] 1988 Ericsson Teleoom
Adthor: Joe Armatroog
Craation Date: 190E=03=34
Furpomse!

main ceduckion argina

Pariaion History:

Ba-03-24 Started work on maltl peocessor weralan
of aslang

BE=03=2R Firat weralon completed (Without timeduts)

ES=03-213 Correct small eroocs

gE=-02-208 Changad 'receiws’ to maka LE EQUUER tha palr
msg | Fram, Maada)

RR=N%=20 Ganarata @rdr message when out at_ﬂfﬂls
i,e. program dossn't end with tecminats

RE-03-23 added trace{onl, trace{cfE} fasiliciag

BE-03-2% Bepowed Yar ;= §.,,.] , this can ba achiawved
with [..]

AR={5=21 Chamged name of flle to eclang.pro

First major revisicn atartad - main changas
Caomplete changa [rom proceas Co channel
eazad sommunleation
hate we (virtuslly) throw away all Ehe
pld stuff and make & Bloddy geaat data Dase
EE-08-91 Tha above a#batamantid W@ace incorfect mech becber
k¢ go back to the FROPER way of doing thinge
leng live difference lists
A&-0R-02 Reds on ronl(et5]] = 245
changing the repcezentatien to sapohrata tha
saviconssat and the peocess - should lmpeave thing=

T did peda = 283 - and the program i= nicer!
§E-06-08 All pipe stuff working (pigss.proe)

pdded coda &0 that undaflngd functions can rpebuen

whluas

16

erlang vs @

h help
P reset reset all queues
reset_erlang kill all erlang definitions
load(F) load erlang file <F>.erlang
load load the same file as before
load(?) what is the current load file
what_erlang list all loaded erlang files
go reduce the main queue to zero
send(A,B,C) perform a send to the main queue
send(A,B) perform a send to the main queue
cq see queue - print main queue
wait_queue(N) print wait _queue(N)
cf see frozen - print all frozen states
eqns see all equations
eqn(N) see equation(N)
start(Mod,Goal) starts Goal in Mod Th I
top top loop run system e manua
q quit top loop
open_dots(Node) opens Node 1986 (or‘ 85)
talk(N) N=1 verbose, =0 silent
peep(M) set peeping point on M
no_peep(M) unset peeping point on M

vsn(X) erlang vsn number is X

17

joe> cat test.erlang listing of program
module(test).

I: start --> write('hello"),nl,go.

2: go --> start_proc(fool,test,test),start _proc(foo2,test,test).
3: test --> wait,

4: wait,[X,1].

5: wait,[X,Y] --> write(received(Y)),nl,wait. Runni ng a
joe> eglang start erlang

erla program
type h

yes

| - load(test). load the program in test.erlang
translating the file:test.erlang

Module:test

12345 equantion numbers are displayed

compiling the file:test.obj

[/u/joe/logic/quintus/erlang/dots/test.obj compiled (1.950 sec 480 bytes)]
loading completed ...

18

The Prolog interpreter (1986)

Fackage: make erlang
Author : Joseph Armatrondg
Updated: 1986-1Z=18

Purposae: compiles and loads the erlang system

o gt ot g

% Thia line MUST come First

i= ensure loadsd(* fufjeefloglof/guintus/1ib/ set library.pl").

version 1.06
dated
1986-12-18

1.03 “lost in the
mists of time"

] wsn 1,03 1logt in the miste of time

van 1,04 added modules and peeping (removed tracing)

% van 1,05 mean wersion = fails in top loop Lo coRngerwe Space

& van 1,06

% added process constants

L] added commands

B gBtart_proc(Id,Module,Goal,Frocess constants)

® iz similar to start_proc/3 with added

% Frocesg constans

& Frocess constants are 8 list of pairs of the Toem
B [{Bey,Vall, (Kevl,Vall),...)

i poonat {Eey, Val)

i looks up tha walue 4f the process conatant

L] with key Key - Binds result to Value or smakes

® SErToOr masgsges

% added bable driwven number analyser

E anal (Seq, Reg]

& given a dialled sequence Seg binds Res

% to one of [invalid,get more digits,matched{Reason]]
wyEn{l _U6) .,

t— angure loaded {(libracy (prims}i.
t= angure loaded(libracv(findms11}),

i= ensure loaded('erlangl.0gf),
1— ensure logded (cunj .

- &nsure loaded (quaua) .

= E&nSure loadsd (reduns) .

i= =nsura_loaded (cesuma) .

1- ensure loaded{timeout] .

I — AR P AP

19

1989 - The need for speed

ACS- Dunder

- "we like the language but it's too slow” - must be 40 times

faster

Mike Williams writes
the emulator (in C)

Joe Armstrong writes
the compiler

Robert Virding writes
the libraries

EL T8

engine.pl

Eclang =ngine

12 ERPS intarp:
15 EFRFS campllad

whad

putLat {Ragl

bldSen ()
BlaMil
b LBy (Rag]

getkil (Regl
gatLat (Reg)
Qe -3 LL: |
gebCon (Reg, T
gt Rag (Reg)
gk Hil

movBag (A1, 2]

E frma locatio

n on heap

loads Fag with a Llat pointéc Ed Reag ;=]
pashers const {Cf to heap

Farhesr nil tc haap

paahas: ag Lo heap

Rag nil 1ifTeue procasd 1fFalsdas teyHast
Amg = lisc{5F) ifTrus met 5P ifFalse CryNax:
naep{dPl = censt Sl 1fTree SP44+ 1fFalse tryHext
Rag condb (T LfTzus prodwed ifFalss btoyblext
Amg = heap{§F} SF++ always crua y
hmap{iF) = nil ifTrue SP++ ifFalse brylaxt

Al!= B2

20

An early JAM compiler (1989)

sys_sys.erl
sys_parse.erl
sys_ari parser.erl
sys_build.erl
sys_match.erl
sys_compile.erl
sys_lists.erl
sys_dictionary.erl
sys_utils.erl
sys_asm.erl
sys_tokenise.erl
sys_parser_ tools.erl
sys_load.erl
sys_opcodes.erl
sys_pp.erl
sys_scan.erl
sys_boot.erl
sys_kernel.erl

18 files

18
783
147
272
253
708

85

82

71
419
413

96
326
128
418
252

59

4544

dummy

erlang parser

parse arithmetic expressions
build function call arguments
match function head arguments
compiler main program

list handling

dictionary handler

utilities

assembler

tokeniser

parser utilities

loader

opcode definitions

pretty printer

scanner

bootstrap

kernel calls

Like the WAM with added primitives for
spawhing processes and message passing

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}

{try_ me_else, label1}
{arg, 0}
{getint, 0}
{pushlint, 1}
ret

label1: try me_else fail
{arg, 0}
dup
{pushint, 1}
minus
{callLocal, fac, 1}
times
ret

21

factorial

rule(fac, 0) ->
[pop,{push,1}];

rule(fac,) ->
[dup,{push,1},
minus,
{call,fac},
times].

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}

{try_ me_else, label1}
{arg, O}
{getint, 0}
{pushint, 1}
ret

label1: try _me_else fail
{arg, 0}
dup
{pushint, 1}
minus
{callLocal, fac, 1}
times
ret

22

factorial

rule(fac, 0) -> [pop,{push,1}];
rule(fac,) -> [dup,{push,1},minus,{call,fac},times].

run() -> reduceO([{call,fac}], [3]).

reduce0(Code, Stack) ->
jo:format("Stack:~p Code:~p~n",[Stack,Code]),
reduce(Code, Stack).

reduce([],[X]) -> X
reduce([{push,N}|Code], T) ->reduce0(Code, [N|T]);
reduce([pop|Code], T) -> reduce0(Code, tI(T));
reduce([dup|Code], [H|T]) -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T));
reduce([{call,Func}|Code], [H|]=Stack) ->

reduceO(rule(Func, H) ++ Code, Stack).

23

> fac:run().
Stack:
Stack:
Stack:
Stack:[
Stack:
Stack:
Stack:
Stack:[
Stack:
Stack:[1,
Stack:[
Stack:[
Stack:
Stack:[
Stack:[
Stack:
Stack:
Stack:
Stack:

3,3]
2,3]

2,3
2,2,3]

1,2
1,1
1,1

0,1,
0,1
1,2

1,2,3]

)

))

))

Code:

Code:
Code:][

Code:
Code:

Code:

] Code:

Code:
Code([
,2,3] Code: [{push,1},times,times,times]
1,1,2,3]
1,2,3] Code:[times,times]
2,3] Code:[times]

6] Code:[]

Code:

factorial

3] Code:[{call,fac}]

3] Code:[dup,{push,1},minus,{call,fac},times]
{push,1},minus,{call,fac},times]
1,3,3] Code:[minus,{call,fac},times]
{call,fac},times]

dup,{push,1},minus,{call,fac},times,times]
{push,1},minus,{call,fac},times,times]
1,2,2,3] Code:[minus,{call,fac},times,times]
{call,fac},times,times]

dup,{push,1},minus,{call,fac},times,times,times]

'{caII fac},times,times,times]
pop,{push,1},times,times,times]

times,times,times]

3]

2,3] {push,1},minus,{call,fac},times,times,times]
1,2,3] Code:[minus,{call,fac},times,times,times]
2,3]

2,3]

787 Kreds/

sec

24

Speedups

Prolog Erlang Interpretor (1988) - 245 reds/sec
Prolog JAM emulator - 35 reds/sec

C Erlang TJAM emulator (1989) - 30K reds/sec

C Erlang BEAM emulator (2010) - 9 Mega reds/sec
Erlang JAM emulator (2010) - 787K reds/sec
Speedup in 21 years is 9M/245 = 36734

N™21= 36734 so N =165 (65% / year)

Hardware (1.15721) * 245 = 4.6 Kreds/sec

25

1989 - Clarity

At the end of 1989

* Knew what the requirements were
* Could compile Erlang
* Knew the syntax

* Had an error recovery model (links,
exceptions)

* Had a few users

* Had a course and material

27

Accepted ideas

* Links/process groups (one crash=all crash)
* Mailbox semantics

* Dynamic code change

* Error recovery model

(we tried dozens)

28

Rejected ideas

* Named pipes
and the pipe algebra
split/merge/ join/fanout
(reappears as AMQP / FBP / ...)
* Mutable data

29

Requirements (1989)

- Handling a very large number of concurrent activities

- Actions to be performed at a certain point of time or
within certain time

- Systems distributed over several computers

- Interaction with hardware

- Very large software systems

- Complex functionality such as feature interaction

- Continuous operation over several years

- Software maintenance (reconfiguration, etc.) without
stopping the system

- Stringent quality and reliability requirements

- Fault tolerance both to hardware failures and
software errors

30

Teaching Erlang

Before powerpoint

il - A
ITRUCTuRE TH
B VAR mBLE MUHBER oF TERMS.
ERicLogiedl THE TTERL

g Tueen

ey

s uEET E'
LISTS ARE whiyTTEN
Cuaidy, ARE SEPARATSD O <ComMbaz)y
Aeb Tl lrrmchebs

A= I-_-‘IJ 3, Apple | pie

ke john, suseats), 79 |

TEY Daiad T
U PPrmea

TREAY(, . 2

AHD ERcw oE Twe
ITEMS 1 THE

LisT =am BRE
=F & DIFFERENT

THE FulDAMENTAL
OPERNTIa T oM L|%TE
—= AEf Cadiedf MDD 0Ty

i BUilDine mud DISTRaAYING ;
L1STS

= T T T R —

32

By 1990 things
were going
so well
that we
could

Buy a train set

——t

Photo: Bengt Sand

Have nice slides made

26

We added new stuff

* Distribution * Bit syntax

* OTP structure * OTP tools

* BEAM * Documented way of
e HIPE doing things

* Type tools

* Philosophy

37

Concurrency Oriented Programming
(MIT 2002)

38

Mid Life Crisis

Erlang Enthusiasm

Mid life
crisis

1986 1996 1998 2000 2001 2010

40

* Banned (1998)

* Open Source (1998)

* Quit Ericsson

* IT Boom

* Startups

* Blutail Acquired $$$ (2000)
* IT Crash

41

Back at the
farm

OTP maintains a low profile

"Rename the project”
"Don’t frighten the users”
"Keep head down"

"Do some technical stuff"”

"Hope nobody notices us”

43

Becoming mainstream

* Long time to change anything big

* More demand for
books/documentation/consultants/teaching

* Many success stores (not just one)
* Rapid change of small things (GIT hub)
* Easier to fund

* Hey, it works |

45

3 things missing

Hashmaps

foo(<{a:X, b:Y | T }>)->

> foo(<{c:23, a:123, b:abc}>)

Binds X=123, Y=abc T=<{c:23}>

47

HOMS + introspection

> module to_list(lists).
[{append,2,F1},{sort,1,F2}...]

> function_to_conc(F1).
“append([H|T], L) -> ...”

> function_to_abs(F1).
{function,append,2,[{clause,...}]}

48

Receive a fun

F = fun({foo,X}) -> ... end

receive(Fun)

49

1 big mistake

We lost too much prolog

friends(A, B) :- likes(A, X),likes(B, X).

friends(L) ->
[{A,B} ||
{likes,A,X} <- L, {likes,B,X1} <- L,
X == X1}]

2 good things

Lightweight processes are ok

* Java "proved” GC
* Smalltalk "proved” messaging

* Erlang "proved"” process belong to the PL
NOT the OS

"An OS is what the language designers
forgot”

53

OTP Behaviours

* Like Higher order functions

* Can encapsulate non functional concepts
(like fail over etc.) in a precise way

* Enforce best practise

* All large teams to work together

54

3 great things

Bit Syntax

- Pattern matching over bits

unpack(<<Red:5,Green:6,Blue:5>>) ->

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

Due to Klacke DgramSize = size(Dgram),

: - case Dgram of
(Claes Vikstrom) <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen: 16,

ID:16, Flgs:3, FragOff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrclP:32,
DestlP:32, RestDgram/binary>> when HLen>=5,
4*HLen=<DgramSize ->
OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = RestDgram,

end.

(unpack Ipv4 datagram)

56

Lmks A is linked to B
B is linked to C

@ ------- If any process crashes an

EXIT message is sent to
the linked processes

This idea comes from the
“C wire” in early telephones
(ground the C wire to
cancel the call)

Encourages "let it crash” programming
57

Non defensive programming

* Program only the happy case
* Let some other process fix the error

* “let it crash”

58

The good ideas

Agent programming works

Copying data is better than shared memory
Messages are good to isolate things

The bit syntax is great

Pure works "most of the time"

Defensive programming is not necessary “let it crash”

59

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

