
SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

Static Compilation of Regular Expressions
for Analysis and Modification

Rob King

DVLabs
TippingPoint Technologies

March 25, 2010

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

OUTLINE

1 Introduction
The Problem
The Base64 Algorithm
Regular Expressions

2 The Algorithm
Ways of Solving the Problem
Encoding Operations

3 Performance
Expression Optimization
Performance Analysis

4 Implementation and Usage
Common Use Cases
Caveats

5 Summary

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE PROBLEM
In which we discover purpose of the whole thing...

This talk is about inspecting streams of data for
interesting patterns, even when that stream of data has
been encoded.
We focus on the Base64 encoding scheme, and
discuss a tool that can be used when dealing with
Base64.
However, most portions of the algorithm are applicable
to other position-dependent bitwise block encodings
(and, potentially, self-synchronizing encodings).
We also want to talk about how Erlang made
development of the tool much easier.

This tool also provided an interesting “back door” to get
Erlang accepted in DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE PROBLEM
In which we discover purpose of the whole thing...

This talk is about inspecting streams of data for
interesting patterns, even when that stream of data has
been encoded.
We focus on the Base64 encoding scheme, and
discuss a tool that can be used when dealing with
Base64.
However, most portions of the algorithm are applicable
to other position-dependent bitwise block encodings
(and, potentially, self-synchronizing encodings).
We also want to talk about how Erlang made
development of the tool much easier.

This tool also provided an interesting “back door” to get
Erlang accepted in DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE PROBLEM
In which we discover purpose of the whole thing...

This talk is about inspecting streams of data for
interesting patterns, even when that stream of data has
been encoded.
We focus on the Base64 encoding scheme, and
discuss a tool that can be used when dealing with
Base64.
However, most portions of the algorithm are applicable
to other position-dependent bitwise block encodings
(and, potentially, self-synchronizing encodings).
We also want to talk about how Erlang made
development of the tool much easier.

This tool also provided an interesting “back door” to get
Erlang accepted in DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE PROBLEM
In which we discover purpose of the whole thing...

This talk is about inspecting streams of data for
interesting patterns, even when that stream of data has
been encoded.
We focus on the Base64 encoding scheme, and
discuss a tool that can be used when dealing with
Base64.
However, most portions of the algorithm are applicable
to other position-dependent bitwise block encodings
(and, potentially, self-synchronizing encodings).
We also want to talk about how Erlang made
development of the tool much easier.

This tool also provided an interesting “back door” to get
Erlang accepted in DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE PROBLEM
In which we discover purpose of the whole thing...

This talk is about inspecting streams of data for
interesting patterns, even when that stream of data has
been encoded.
We focus on the Base64 encoding scheme, and
discuss a tool that can be used when dealing with
Base64.
However, most portions of the algorithm are applicable
to other position-dependent bitwise block encodings
(and, potentially, self-synchronizing encodings).
We also want to talk about how Erlang made
development of the tool much easier.

This tool also provided an interesting “back door” to get
Erlang accepted in DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE PROBLEM
In which we discover purpose of the whole thing...

This talk is about inspecting streams of data for
interesting patterns, even when that stream of data has
been encoded.
We focus on the Base64 encoding scheme, and
discuss a tool that can be used when dealing with
Base64.
However, most portions of the algorithm are applicable
to other position-dependent bitwise block encodings
(and, potentially, self-synchronizing encodings).
We also want to talk about how Erlang made
development of the tool much easier.

This tool also provided an interesting “back door” to get
Erlang accepted in DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

CHALLENGES OF DATA STREAM
INSPECTION

When looking for patterns in streams of data, several things
must be kept in mind:

There is no “luxury of time”.
Context is limited.
Resources are limited.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

CHALLENGES OF DATA STREAM
INSPECTION

When looking for patterns in streams of data, several things
must be kept in mind:

There is no “luxury of time”.
Context is limited.
Resources are limited.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

CHALLENGES OF DATA STREAM
INSPECTION

When looking for patterns in streams of data, several things
must be kept in mind:

There is no “luxury of time”.
Context is limited.
Resources are limited.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

CHALLENGES OF DATA STREAM
INSPECTION

When looking for patterns in streams of data, several things
must be kept in mind:

There is no “luxury of time”.
Context is limited.
Resources are limited.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODED STREAMS

Sometimes, the streams we’re inspecting will be
encoded.
This means that we’re going to have to be (more!)
clever when looking for patterns in these streams.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS

There are several general strategies for dealing with
encoded streams.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 1: Ignore the Encoding

The easiest thing to do is simply pretend the stream is
not encoded at all.
Advantages:

We’re already done.
Disadvantages:

We’re essentially admitting defeat.
Whatever we were looking for is not going to be found.
We’re stil burdening our analysis engine with lots of
data with which we can do nothing.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 1: Ignore the Encoding

The easiest thing to do is simply pretend the stream is
not encoded at all.
Advantages:

We’re already done.
Disadvantages:

We’re essentially admitting defeat.
Whatever we were looking for is not going to be found.
We’re stil burdening our analysis engine with lots of
data with which we can do nothing.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 1: Ignore the Encoding

The easiest thing to do is simply pretend the stream is
not encoded at all.
Advantages:

We’re already done.
Disadvantages:

We’re essentially admitting defeat.
Whatever we were looking for is not going to be found.
We’re stil burdening our analysis engine with lots of
data with which we can do nothing.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 2: Ignore the Data

Rather than pretending that the data is not encoded,
we could go one step further, and detect that the data is
encoded.
Once we’ve detected that the data is encoded, we can
simply drop the stream.
Advantages:

Stops burdening with inspection engine with data we
know we can’t inspect.

Disadvantages:
If we “fail open” and allow encoded data to pass without
inspection, we just gave anyone who wants to bypass
our inspection a “get out of jail free” card.
If we “fail closed” and block encoded data, we just
blocked all legitimate uses of that encoding scheme.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 2: Ignore the Data

Rather than pretending that the data is not encoded,
we could go one step further, and detect that the data is
encoded.
Once we’ve detected that the data is encoded, we can
simply drop the stream.
Advantages:

Stops burdening with inspection engine with data we
know we can’t inspect.

Disadvantages:
If we “fail open” and allow encoded data to pass without
inspection, we just gave anyone who wants to bypass
our inspection a “get out of jail free” card.
If we “fail closed” and block encoded data, we just
blocked all legitimate uses of that encoding scheme.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 2: Ignore the Data

Rather than pretending that the data is not encoded,
we could go one step further, and detect that the data is
encoded.
Once we’ve detected that the data is encoded, we can
simply drop the stream.
Advantages:

Stops burdening with inspection engine with data we
know we can’t inspect.

Disadvantages:
If we “fail open” and allow encoded data to pass without
inspection, we just gave anyone who wants to bypass
our inspection a “get out of jail free” card.
If we “fail closed” and block encoded data, we just
blocked all legitimate uses of that encoding scheme.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 2: Ignore the Data

Rather than pretending that the data is not encoded,
we could go one step further, and detect that the data is
encoded.
Once we’ve detected that the data is encoded, we can
simply drop the stream.
Advantages:

Stops burdening with inspection engine with data we
know we can’t inspect.

Disadvantages:
If we “fail open” and allow encoded data to pass without
inspection, we just gave anyone who wants to bypass
our inspection a “get out of jail free” card.
If we “fail closed” and block encoded data, we just
blocked all legitimate uses of that encoding scheme.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODING STREAMS
Strategy 3: Store and Forward

We could buffer the entirety of an encoded stream.
Once we’ve buffered the whole stream, we can decode
it, inspect it, reencode it, and send it on its way.
Advantages:

We get the complete power of our inspection engine.
Disadvantages:

Latency becomes unbounded.
Resource usage becomes unbounded.
We have to modify the engine for every encoding we
need to inspect.

These advantages and disadvantages apply roughly
equally to any streaming decoder.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODING STREAMS
Strategy 3: Store and Forward

We could buffer the entirety of an encoded stream.
Once we’ve buffered the whole stream, we can decode
it, inspect it, reencode it, and send it on its way.
Advantages:

We get the complete power of our inspection engine.
Disadvantages:

Latency becomes unbounded.
Resource usage becomes unbounded.
We have to modify the engine for every encoding we
need to inspect.

These advantages and disadvantages apply roughly
equally to any streaming decoder.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODING STREAMS
Strategy 3: Store and Forward

We could buffer the entirety of an encoded stream.
Once we’ve buffered the whole stream, we can decode
it, inspect it, reencode it, and send it on its way.
Advantages:

We get the complete power of our inspection engine.
Disadvantages:

Latency becomes unbounded.
Resource usage becomes unbounded.
We have to modify the engine for every encoding we
need to inspect.

These advantages and disadvantages apply roughly
equally to any streaming decoder.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODING STREAMS
Strategy 3: Store and Forward

We could buffer the entirety of an encoded stream.
Once we’ve buffered the whole stream, we can decode
it, inspect it, reencode it, and send it on its way.
Advantages:

We get the complete power of our inspection engine.
Disadvantages:

Latency becomes unbounded.
Resource usage becomes unbounded.
We have to modify the engine for every encoding we
need to inspect.

These advantages and disadvantages apply roughly
equally to any streaming decoder.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODING STREAMS
Strategy 3: Store and Forward

We could buffer the entirety of an encoded stream.
Once we’ve buffered the whole stream, we can decode
it, inspect it, reencode it, and send it on its way.
Advantages:

We get the complete power of our inspection engine.
Disadvantages:

Latency becomes unbounded.
Resource usage becomes unbounded.
We have to modify the engine for every encoding we
need to inspect.

These advantages and disadvantages apply roughly
equally to any streaming decoder.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 4: Modify the Pattern

Instead of decoding the data, we could encode the
pattern.
Advantages:

We get (most?) of the power of our inspection engine.
There is no performance penalty for decoding.
Resource usage and latency are bounded.
We need not buffer or store context.

Disadvantages:
A different transform must be written for each scheme.
Might not be possible for some schemes or patterns.
False positives may become more common.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 4: Modify the Pattern

Instead of decoding the data, we could encode the
pattern.
Advantages:

We get (most?) of the power of our inspection engine.
There is no performance penalty for decoding.
Resource usage and latency are bounded.
We need not buffer or store context.

Disadvantages:
A different transform must be written for each scheme.
Might not be possible for some schemes or patterns.
False positives may become more common.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

DEALING WITH ENCODED STREAMS
Strategy 4: Modify the Pattern

Instead of decoding the data, we could encode the
pattern.
Advantages:

We get (most?) of the power of our inspection engine.
There is no performance penalty for decoding.
Resource usage and latency are bounded.
We need not buffer or store context.

Disadvantages:
A different transform must be written for each scheme.
Might not be possible for some schemes or patterns.
False positives may become more common.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
In which we discover the usefulness of large radices
or “Maybe the Sumerians were right after all...”

Base64 is an Internet standard for encoding arbitrary
(usually binary) data using only printable characters
common in many character sets.
Multiple minor variants, but the most common is
defined in RFC4648.
Base64 is used in numerous situations, essentially
whenever binary data needs to be encoded in a
printable form.

http://tools.ietf.org/html/rfc4648

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Encoding and Email

The most common application of Base64 is in the encoding
of attachments to email messages.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Input

Base64 expects input as a series of eight-bit octets.
Every three octets are grouped together into a
collection of 24-bits.
These 24-bits are then split into four six-bit sextets.
Each sextet is used as a big-endian index into the
zero-based array that is the Base64 alphabet.

If the input is not evenly divisible by three, it is
right-padded by one or two octets of zeroes, and one or
two “=” symbols are appended to the output.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Input

Base64 expects input as a series of eight-bit octets.
Every three octets are grouped together into a
collection of 24-bits.
These 24-bits are then split into four six-bit sextets.
Each sextet is used as a big-endian index into the
zero-based array that is the Base64 alphabet.

If the input is not evenly divisible by three, it is
right-padded by one or two octets of zeroes, and one or
two “=” symbols are appended to the output.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Input

Base64 expects input as a series of eight-bit octets.
Every three octets are grouped together into a
collection of 24-bits.
These 24-bits are then split into four six-bit sextets.
Each sextet is used as a big-endian index into the
zero-based array that is the Base64 alphabet.

If the input is not evenly divisible by three, it is
right-padded by one or two octets of zeroes, and one or
two “=” symbols are appended to the output.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Input

Base64 expects input as a series of eight-bit octets.
Every three octets are grouped together into a
collection of 24-bits.
These 24-bits are then split into four six-bit sextets.
Each sextet is used as a big-endian index into the
zero-based array that is the Base64 alphabet.

If the input is not evenly divisible by three, it is
right-padded by one or two octets of zeroes, and one or
two “=” symbols are appended to the output.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Input

Base64 expects input as a series of eight-bit octets.
Every three octets are grouped together into a
collection of 24-bits.
These 24-bits are then split into four six-bit sextets.
Each sextet is used as a big-endian index into the
zero-based array that is the Base64 alphabet.

If the input is not evenly divisible by three, it is
right-padded by one or two octets of zeroes, and one or
two “=” symbols are appended to the output.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Base64 Input

Base64 expects input as a series of eight-bit octets.
Every three octets are grouped together into a
collection of 24-bits.
These 24-bits are then split into four six-bit sextets.
Each sextet is used as a big-endian index into the
zero-based array that is the Base64 alphabet.

If the input is not evenly divisible by three, it is
right-padded by one or two octets of zeroes, and one or
two “=” symbols are appended to the output.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
The Base64 Alphabet

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 A B C D E F G H I J K L M N O P
1 Q R S T U V W X Y Z a b c d e f
2 g h i j k l m n o p q r s t u v
3 w x y z 0 1 2 3 4 5 6 7 8 9 + /

The “=” sign is used for padding.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

BASE64
Position Dependence

Base64 is position dependent.
In general, any given string will be encoded in one of
three different ways, depending on its offset into the
input.
This is what makes the encoding of patterns so hard.

Encoding of “foo” at Three Different Offsets
Offset 0 Zm9v
Offset 1 [159BFJNRVZdhlptx]mb2[+/8-9]
Offset 2 [2GWm]Zvb[+/0-9w-z]

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

REGULAR EXPRESSIONS
Choosing a Pattern Language

Our choice of pattern language controls the overall
complexity of patterns for which we can search.
If we were just looking for static strings, we wouldn’t
need a new tool - just use grep.
Regular expressions provide a good balance of ease of
implementation, expressive power, and common
availability.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

REGULAR EXPRESSIONS
(Automata Theory) ∩ (Formal Language Theory) ≈ Regular Expressions

Formalized by Stephen Kleene in 1956.
Ken Thompson incorporated them as a useful pattern
matching tool into his version of the QED editor for
MIT’s CTSS timesharing system.
This later influenced Ken Thompson’s implementation
of ed for UNIX.
From UNIX, regular expressions spread around the
world.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUPPORTED REGULAR EXPRESSION
OPERATIONS

Character matches (e.g. “a”)
Concatenation (e.g. “ab”)
Alternation (e.g. “(ab|cd)”)
Character classes and inverse classes (e.g. “[0− 9]”)
Kleene closures (e.g. “A*C”)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

UNSUPPORTED REGULAR EXPRESSION
OPERATIONS

Backreferences and captures
Variable-length repetition
Left and right anchors
Just about everything else

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

RESTATEMENT OF PURPOSE

Come up with a way to transform an arbitrary regular
expression such that it will match its input when that
input has been encoded using the Base64 algorithm.
Do this transformation in such a way that the regular
expression does not grow too large.
Do this transformation in such a way that not too much
information is lost.
Do this transformation in such a way that the
expression will match regardless of the pattern’s offset
from the beginning of input.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

RESTATEMENT OF PURPOSE

Come up with a way to transform an arbitrary regular
expression such that it will match its input when that
input has been encoded using the Base64 algorithm.
Do this transformation in such a way that the regular
expression does not grow too large.
Do this transformation in such a way that not too much
information is lost.
Do this transformation in such a way that the
expression will match regardless of the pattern’s offset
from the beginning of input.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

RESTATEMENT OF PURPOSE

Come up with a way to transform an arbitrary regular
expression such that it will match its input when that
input has been encoded using the Base64 algorithm.
Do this transformation in such a way that the regular
expression does not grow too large.
Do this transformation in such a way that not too much
information is lost.
Do this transformation in such a way that the
expression will match regardless of the pattern’s offset
from the beginning of input.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

RESTATEMENT OF PURPOSE

Come up with a way to transform an arbitrary regular
expression such that it will match its input when that
input has been encoded using the Base64 algorithm.
Do this transformation in such a way that the regular
expression does not grow too large.
Do this transformation in such a way that not too much
information is lost.
Do this transformation in such a way that the
expression will match regardless of the pattern’s offset
from the beginning of input.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Right Way

Convert the regular expression into a nondeterministic
finite state automaton using Thompson’s algorithm,
then convert the NFA to a deterministic finite state
automaton using the powerset construction algorithm,
then transform the DFA into a directed acyclic graph,
then perform graph reductions until the graph is in a
minimal form, transform the minimal form using graph
transformations, then reduce again, then serialize the
graph as a regular expression.
This is hard, and I’m lazy.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Right Way

Convert the regular expression into a nondeterministic
finite state automaton using Thompson’s algorithm,
then convert the NFA to a deterministic finite state
automaton using the powerset construction algorithm,
then transform the DFA into a directed acyclic graph,
then perform graph reductions until the graph is in a
minimal form, transform the minimal form using graph
transformations, then reduce again, then serialize the
graph as a regular expression.
This is hard, and I’m lazy.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Right Way

Convert the regular expression into a nondeterministic
finite state automaton using Thompson’s algorithm,
then convert the NFA to a deterministic finite state
automaton using the powerset construction algorithm,
then transform the DFA into a directed acyclic graph,
then perform graph reductions until the graph is in a
minimal form, transform the minimal form using graph
transformations, then reduce again, then serialize the
graph as a regular expression.
This is hard, and I’m lazy.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way

Enumerate all possible matching strings for a regular
expression.
Encode these strings and concatenate them inside an
alternating regular expression.
This would definitely work, with one problem...
Regular expressions with Kleene closures can match
an infinite number of strings.
Enumerating an infinite number of strings can take a
really long time.
Even the trivial regular expression “....” would match
over four billion strings.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way, But Faster!

Enumerating all possible matching strings would, in
theory, give us the correct answer.
Instead of enumerating all possible strings and
encoding them, what if we encoded the operations?
In other words, what if we enumerated only what could
match a given operation at a given point in time?

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way, But Faster!

Enumerating all possible matching strings would, in
theory, give us the correct answer.
Instead of enumerating all possible strings and
encoding them, what if we encoded the operations?
In other words, what if we enumerated only what could
match a given operation at a given point in time?

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way, But Faster!

Enumerating all possible matching strings would, in
theory, give us the correct answer.
Instead of enumerating all possible strings and
encoding them, what if we encoded the operations?
In other words, what if we enumerated only what could
match a given operation at a given point in time?

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

WAYS OF SOLVING THE PROBLEM
The Wrong Way, But Faster!

Enumerating all possible matching strings would, in
theory, give us the correct answer.
Instead of enumerating all possible strings and
encoding them, what if we encoded the operations?
In other words, what if we enumerated only what could
match a given operation at a given point in time?

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE ALGORITHM
In a nutshell...

Create a list of regular expressions that match a
fixed-length string.
Enumerate the bitstrings matched by each of these
expressions.
Break each of these bitstrings into six-bit units.
Encode each of these units.
Treat each of these encoded strings as a branch in an
n-way alternation in a regular expression.
Optimize the expression.
There is special handling for the two “meta” operations:
alternations and closures.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING OPERATIONS
The Fixed-Length Rule

Non-fixed-length operations leave ambiguity as to what
bits to place in a given six-bit unit.
The goal of this phase of the algorithm is to get a
collection of regular expressions that match fixed-length
strings.
First, let’s go over how to encode the atomic operations.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING OPERATIONS
Single Characters

This is a fairly obvious - a single character is encoded as the
bitstring for that character.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING OPERATIONS
Character Classes and Inverted Character Classes

Character classes are stored as a list of all characters
included in the class. This is not the most efficient possible
choice in terms of memory usage, but its implementation is
simpler and it is often faster.

Inverted character classes simply store the complement of
the list of indicated characters.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING OPERATIONS
Wildcards

Wildcards are simply encoded as a character class with 256
entries. In the underlying implementation they are encoded
as a special atom to save space, but from the point of view
of the algorithm there is no difference.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING OPERATIONS
Concatenation

Single characters, character classes, and wildcards are
treated as the building blocks of lists.
Each fixed-length expression is simply a list of these
operations.
Therefore, concatenation is modelled implicitly by the
ordering of these operations in the list.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Alternations and Fixed Lengths

It was stated earlier that the algorithm deals only with
regular expressions that match only fixed-length strings.
Alternations can easily violate this: if one branch of an
alternation has more character matches than the other,
the expression overall is not fixed length.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Alternations and Fixed Lengths

It was stated earlier that the algorithm deals only with
regular expressions that match only fixed-length strings.
Alternations can easily violate this: if one branch of an
alternation has more character matches than the other,
the expression overall is not fixed length.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Alternations and Fixed Lengths

It was stated earlier that the algorithm deals only with
regular expressions that match only fixed-length strings.
Alternations can easily violate this: if one branch of an
alternation has more character matches than the other,
the expression overall is not fixed length.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Alternations as Directed Acyclic Graphs

Alternations turn our simple lists of operations into
directed acyclic graphs.
For example, below is the representation of the regular
expression “A(B|(C|D)E)F”.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Making Alternations Fixed-Length

We can easily create a list of fixed-length expressions
by enumerating all topological sorts of the graph.
For each distinct topological sort, we can create a list of
fixed-length operations.
This reduces an alternation to a fixed-length structure,
and can be performed recursively, resulting in a list of
expressions, each of a fixed-length.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
The Mythical End

By adding an explicit “end of expression”
pseudo-operation to the end of every expression, we
can guarantee that all expressions have a shared tail.
We can also add some number of explicit “start of
expression” pseudo-operations from every entry point
into the expression.
These operations does not actually match anything;
they exist solely for ease of implementation.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Encoding Each Fixed-Length Expression

By finding a path from every START node to the END

node, we can produce a list of fixed-length expressions.
Note that this is essentially equivalent of the list of
topological sorts, but provides the storage advantage of
a shared tail.
Implementation is also considerably easier and
performs much better, since we don’t need to
implement a general topological sort; rather we can
simply maintain a list of all start nodes and follow the
only eminating edge from every node until we reach the
end.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING ALTERNATIONS
Recursive Application

We can apply this recursively, to build up a list of
fixed-length expressions from a regular expression,
even with nested alternations.
Each of these fixed length expressions can be encoded
easily using the methods for the fixed-length operations
above.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
Create a List of Fixed Length Bit Expressions

Using the algorithm above, we can create a list of
fixed-length expressions consisting of eight bit units (for
single characters) or lists of eight bit units (for character
classes and wildcards).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
Extract Six Bits at a Time

We now use a consumer function to walk through each
fixed-length expression, extracting six bits at a time.
This produces a new list of six-bit units.
When the consumer function must get bits from a
single character and a character class, or two classes,
a list of six bit units is placed in the result list.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
The Initial and Final Bits

Since the expression is going to be examining data in a
streaming context, left and right anchors don’t make
sense in most situations.
Therefore, if any bits are needed to complete a six-bit
unit at the beginning or the end of the expression, they
are treated as if a wildcard were present immediately
before or after the expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
The Initial and Final Bits

Since the expression is going to be examining data in a
streaming context, left and right anchors don’t make
sense in most situations.
Therefore, if any bits are needed to complete a six-bit
unit at the beginning or the end of the expression, they
are treated as if a wildcard were present immediately
before or after the expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
The Initial and Final Bits

Since the expression is going to be examining data in a
streaming context, left and right anchors don’t make
sense in most situations.
Therefore, if any bits are needed to complete a six-bit
unit at the beginning or the end of the expression, they
are treated as if a wildcard were present immediately
before or after the expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
Encode the Expressions

Each six bit unit is then replaced with its equivalent
symbol in the Base64 alphabet.
For lists of six bit units (from character classes), a list of
Base64 symbols is produced.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITHOUT
CLOSURES
The Final Expression

The list of fixed-length encoded expressions is joined
into an n-way alternation, which is treated as a regular
expression.
This expression is first run through the optimizer, which
recursively refactors common prefixes and suffixes.
The expression is then reprocessed two more times, to
account for varying offsets from the beginning of input.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITH
CLOSURES
Violating the Fixed Length and Acyclic Rules

Expressions with Kleene closures violate the
fixed-length rule, since subexpressions can appear
from zero to infinitely many times.
Expressions with Kleene closures violate the acylic
rule, since repeating expressions would become cycles
in the graph representation.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITH
CLOSURES
The Easy Case

The easiest case for encoding closures is the case
where they don’t appear at all.
Whenever a closure is present in an expression, it acts
as a virtual alternation, with one branch having at least
one instance of the closure, and the other branch
having no instances.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITH
CLOSURES
Marking Closures

Closures are encoded three times, to account for
varying offsets from the beginning of input.
These three encoded expressions are placed in a
special data structure that marks them as the
components of a closure.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

ENCODING EXPRESSIONS WITH
CLOSURES
A List of Expressions

Expressions with closures are treated as a list of
expressions.
The expressions are split such that each
specially-encoded closure is a separate expression.
Lists of expressions are encoded such that the implicit
wildcard at the beginning and ending of each
expression is replaced with the appropriate values from
the next or previous expression in the list.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

EXPRESSION OPTIMIZATION
Common Prefix and Suffix Refactoring

The expression is treated as a list of constant-length
expressions, from each possible starting expression to
the logical end.
All of these expressions will differ only around places
where alternations were present.
Therefore, everything leading up to the alternation, and
everything after the alternation, will be identical for
various expressions.
We can therefore optimize the expression by
refactoring all common prefixes and suffixes.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

EXPRESSION OPTIMIZATION
Common Prefix and Suffix Refactoring

The expression is treated as a list of constant-length
expressions, from each possible starting expression to
the logical end.
All of these expressions will differ only around places
where alternations were present.
Therefore, everything leading up to the alternation, and
everything after the alternation, will be identical for
various expressions.
We can therefore optimize the expression by
refactoring all common prefixes and suffixes.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

EXPRESSION OPTIMIZATION
Common Prefix and Suffix Refactoring

The expression is treated as a list of constant-length
expressions, from each possible starting expression to
the logical end.
All of these expressions will differ only around places
where alternations were present.
Therefore, everything leading up to the alternation, and
everything after the alternation, will be identical for
various expressions.
We can therefore optimize the expression by
refactoring all common prefixes and suffixes.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

EXPRESSION OPTIMIZATION
Common Prefix and Suffix Refactoring

The expression is treated as a list of constant-length
expressions, from each possible starting expression to
the logical end.
All of these expressions will differ only around places
where alternations were present.
Therefore, everything leading up to the alternation, and
everything after the alternation, will be identical for
various expressions.
We can therefore optimize the expression by
refactoring all common prefixes and suffixes.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

EXPRESSION OPTIMIZATION
Common Prefix and Suffix Refactoring

The expression is treated as a list of constant-length
expressions, from each possible starting expression to
the logical end.
All of these expressions will differ only around places
where alternations were present.
Therefore, everything leading up to the alternation, and
everything after the alternation, will be identical for
various expressions.
We can therefore optimize the expression by
refactoring all common prefixes and suffixes.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Formal Analysis of the Naive Algorithm

In general, the algorithm will run in O(n2) time, since
every addition of an alternation results in twice as many
START nodes.
This can of course become rapidly intractable, since
even having 32 alternations would result in over four
billion START nodes.
While we do perform some optimizations to improve the
theoretical running time, it is useful to point out that in
the vast majority of practical runs, expressions
generally have fewer than twenty alternations.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Formal Analysis of the Naive Algorithm

In general, the algorithm will run in O(n2) time, since
every addition of an alternation results in twice as many
START nodes.
This can of course become rapidly intractable, since
even having 32 alternations would result in over four
billion START nodes.
While we do perform some optimizations to improve the
theoretical running time, it is useful to point out that in
the vast majority of practical runs, expressions
generally have fewer than twenty alternations.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Formal Analysis of the Naive Algorithm

In general, the algorithm will run in O(n2) time, since
every addition of an alternation results in twice as many
START nodes.
This can of course become rapidly intractable, since
even having 32 alternations would result in over four
billion START nodes.
While we do perform some optimizations to improve the
theoretical running time, it is useful to point out that in
the vast majority of practical runs, expressions
generally have fewer than twenty alternations.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Formal Analysis of the Naive Algorithm

In general, the algorithm will run in O(n2) time, since
every addition of an alternation results in twice as many
START nodes.
This can of course become rapidly intractable, since
even having 32 alternations would result in over four
billion START nodes.
While we do perform some optimizations to improve the
theoretical running time, it is useful to point out that in
the vast majority of practical runs, expressions
generally have fewer than twenty alternations.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Optimizing the Algorithm

The primary space optimization is the shared tail of the
core data structure. Outside of pathological cases, this
saves considerable storage.
The alternation processing portion of the algorithm in
reality only splits the expression when the two branches
of the expression are of unequal length. This reduces
the number of paths in many situations.
Most of the calculations are memoized; that is, they are
run only once for any given input for any given position
and offset.
With all of these optimizations taken into account, for
most regular expressions in our test data set, runtimes
of under three minutes are found (though memory
usage is roughly quadratic on the number of operations
in the expression).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Optimizing the Algorithm

The primary space optimization is the shared tail of the
core data structure. Outside of pathological cases, this
saves considerable storage.
The alternation processing portion of the algorithm in
reality only splits the expression when the two branches
of the expression are of unequal length. This reduces
the number of paths in many situations.
Most of the calculations are memoized; that is, they are
run only once for any given input for any given position
and offset.
With all of these optimizations taken into account, for
most regular expressions in our test data set, runtimes
of under three minutes are found (though memory
usage is roughly quadratic on the number of operations
in the expression).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Optimizing the Algorithm

The primary space optimization is the shared tail of the
core data structure. Outside of pathological cases, this
saves considerable storage.
The alternation processing portion of the algorithm in
reality only splits the expression when the two branches
of the expression are of unequal length. This reduces
the number of paths in many situations.
Most of the calculations are memoized; that is, they are
run only once for any given input for any given position
and offset.
With all of these optimizations taken into account, for
most regular expressions in our test data set, runtimes
of under three minutes are found (though memory
usage is roughly quadratic on the number of operations
in the expression).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Optimizing the Algorithm

The primary space optimization is the shared tail of the
core data structure. Outside of pathological cases, this
saves considerable storage.
The alternation processing portion of the algorithm in
reality only splits the expression when the two branches
of the expression are of unequal length. This reduces
the number of paths in many situations.
Most of the calculations are memoized; that is, they are
run only once for any given input for any given position
and offset.
With all of these optimizations taken into account, for
most regular expressions in our test data set, runtimes
of under three minutes are found (though memory
usage is roughly quadratic on the number of operations
in the expression).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

PERFORMANCE ANALYSIS
Optimizing the Algorithm

The primary space optimization is the shared tail of the
core data structure. Outside of pathological cases, this
saves considerable storage.
The alternation processing portion of the algorithm in
reality only splits the expression when the two branches
of the expression are of unequal length. This reduces
the number of paths in many situations.
Most of the calculations are memoized; that is, they are
run only once for any given input for any given position
and offset.
With all of these optimizations taken into account, for
most regular expressions in our test data set, runtimes
of under three minutes are found (though memory
usage is roughly quadratic on the number of operations
in the expression).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
History - Why Erlang?

The initial version of the tool was written in Lua.
However, the tool was quickly rewritten in Erlang.
Erlang provided a much cleaner method of
implementing shared-tail lists, memoization, and bit
manipulation.

Total implementation is around 1500 lines of heavily-
commented Erlang.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
History - Why Erlang?

The initial version of the tool was written in Lua.
However, the tool was quickly rewritten in Erlang.
Erlang provided a much cleaner method of
implementing shared-tail lists, memoization, and bit
manipulation.

Total implementation is around 1500 lines of heavily-
commented Erlang.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
History - Why Erlang?

The initial version of the tool was written in Lua.
However, the tool was quickly rewritten in Erlang.
Erlang provided a much cleaner method of
implementing shared-tail lists, memoization, and bit
manipulation.

Total implementation is around 1500 lines of heavily-
commented Erlang.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
History - Why Erlang?

The initial version of the tool was written in Lua.
However, the tool was quickly rewritten in Erlang.
Erlang provided a much cleaner method of
implementing shared-tail lists, memoization, and bit
manipulation.

Total implementation is around 1500 lines of heavily-
commented Erlang.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
How Erlang Helped

The tool’s functionality can be divided into the following
stages, each of which is well-served by some part of
Erlang or the OTP:

Parse the regular expression (YECC).
Create a series of bitstrings and arrays of bitstrings
(Erlang’s native bitstring functionality).
Create a graph of bitstring nodes, and manipulate the
graph (Erlang’s DIGRAPH module).
Determine unique paths through the graph (DIGRAPH).
Compute the transformations on each path, in parallel
(Erlang’s extremely easy process creation).
Combine the results and optimize them (optimization
problem was very easy to express in a functional way).
Serialize everything out (uhm...IO:FORMAT?).

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
The Future

Erlang makes it very easy to parallelize computation
across multiple threads, processors, and machines.
The algorithm itself is very amenable to parallelization,
and an experimental version of the tool has shown
significant speedups.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

THE IMPLEMENTATION
The Future

Erlang makes it very easy to parallelize computation
across multiple threads, processors, and machines.
The algorithm itself is very amenable to parallelization,
and an experimental version of the tool has shown
significant speedups.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Prefiltering Email

While a traditional store-and-forward email server is of
course optimal for filtering email, b64re-based
signatures on an IPS have been useful in prefiltering
email.
One common use case is filtering obviously malicious
email, based on shellcode detection or other
parameters, lowering the load on the backend mail
server.
Another interesting application is protecting
store-and-forward scanners from themselves. Some
systems have bugs that can be triggered by specially
formatted emails; an inline IPS can filter these attacks.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Prefiltering Email

While a traditional store-and-forward email server is of
course optimal for filtering email, b64re-based
signatures on an IPS have been useful in prefiltering
email.
One common use case is filtering obviously malicious
email, based on shellcode detection or other
parameters, lowering the load on the backend mail
server.
Another interesting application is protecting
store-and-forward scanners from themselves. Some
systems have bugs that can be triggered by specially
formatted emails; an inline IPS can filter these attacks.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Prefiltering Email

While a traditional store-and-forward email server is of
course optimal for filtering email, b64re-based
signatures on an IPS have been useful in prefiltering
email.
One common use case is filtering obviously malicious
email, based on shellcode detection or other
parameters, lowering the load on the backend mail
server.
Another interesting application is protecting
store-and-forward scanners from themselves. Some
systems have bugs that can be triggered by specially
formatted emails; an inline IPS can filter these attacks.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Prefiltering Email

While a traditional store-and-forward email server is of
course optimal for filtering email, b64re-based
signatures on an IPS have been useful in prefiltering
email.
One common use case is filtering obviously malicious
email, based on shellcode detection or other
parameters, lowering the load on the backend mail
server.
Another interesting application is protecting
store-and-forward scanners from themselves. Some
systems have bugs that can be triggered by specially
formatted emails; an inline IPS can filter these attacks.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Data Extrusion

Email is a common source of sensitive data leakage.
An inline IPS running signatures using this tool can be
used to scan for outbound sensitive information, even if
an external mail server is used.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Data Extrusion

Email is a common source of sensitive data leakage.
An inline IPS running signatures using this tool can be
used to scan for outbound sensitive information, even if
an external mail server is used.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

COMMON USE CASES
Data Extrusion

Email is a common source of sensitive data leakage.
An inline IPS running signatures using this tool can be
used to scan for outbound sensitive information, even if
an external mail server is used.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

FALSE POSITIVES
Detecting the Wrong Thing

Expressions processed in this way are inherently looser
than their unencoded counterparts. Why?
Recall that the expression is encoded three times, to
account for varying offsets from the beginning of input.
The expression designed to match when its offset is
n + 1 from the beginning of the input could match input
that is actually at a different modular offset.
This is mitigated somewhat if the expression can be
anchored by long constant strings, or if the beginning of
input is known.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

FALSE POSITIVES
Detecting the Wrong Thing

Expressions processed in this way are inherently looser
than their unencoded counterparts. Why?
Recall that the expression is encoded three times, to
account for varying offsets from the beginning of input.
The expression designed to match when its offset is
n + 1 from the beginning of the input could match input
that is actually at a different modular offset.
This is mitigated somewhat if the expression can be
anchored by long constant strings, or if the beginning of
input is known.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

FALSE POSITIVES
Detecting the Wrong Thing

Expressions processed in this way are inherently looser
than their unencoded counterparts. Why?
Recall that the expression is encoded three times, to
account for varying offsets from the beginning of input.
The expression designed to match when its offset is
n + 1 from the beginning of the input could match input
that is actually at a different modular offset.
This is mitigated somewhat if the expression can be
anchored by long constant strings, or if the beginning of
input is known.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

FALSE POSITIVES
Detecting the Wrong Thing

Expressions processed in this way are inherently looser
than their unencoded counterparts. Why?
Recall that the expression is encoded three times, to
account for varying offsets from the beginning of input.
The expression designed to match when its offset is
n + 1 from the beginning of the input could match input
that is actually at a different modular offset.
This is mitigated somewhat if the expression can be
anchored by long constant strings, or if the beginning of
input is known.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

FALSE POSITIVES
Detecting the Wrong Thing

Expressions processed in this way are inherently looser
than their unencoded counterparts. Why?
Recall that the expression is encoded three times, to
account for varying offsets from the beginning of input.
The expression designed to match when its offset is
n + 1 from the beginning of the input could match input
that is actually at a different modular offset.
This is mitigated somewhat if the expression can be
anchored by long constant strings, or if the beginning of
input is known.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

NEWLINE INSERTION
Breaking Up Input

Most Base64 processors allow the insertion of newlines
at arbitrary points of the input.
The encoded expression can be modified to include an
optional newline after every character, though this is
expensive.
Some regular expression engines offer the ability to
strip newlines from input, removing the burden on the
expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

NEWLINE INSERTION
Breaking Up Input

Most Base64 processors allow the insertion of newlines
at arbitrary points of the input.
The encoded expression can be modified to include an
optional newline after every character, though this is
expensive.
Some regular expression engines offer the ability to
strip newlines from input, removing the burden on the
expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

NEWLINE INSERTION
Breaking Up Input

Most Base64 processors allow the insertion of newlines
at arbitrary points of the input.
The encoded expression can be modified to include an
optional newline after every character, though this is
expensive.
Some regular expression engines offer the ability to
strip newlines from input, removing the burden on the
expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

NEWLINE INSERTION
Breaking Up Input

Most Base64 processors allow the insertion of newlines
at arbitrary points of the input.
The encoded expression can be modified to include an
optional newline after every character, though this is
expensive.
Some regular expression engines offer the ability to
strip newlines from input, removing the burden on the
expression.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY

Using this tool, users can reap several benefits:
Pre-filter encoded data streams, lessening the need for
expensive decoding.
Protect infrastructure that provides decoding services
but is itself vulnerable
Inspect encoded streams within incurring the overhead
of decoding.

This talk illustrates some interesting challenges when
inspecting encoded streams of data, especially in a
performance-critical way, and gives some possible
solutions.
This talk illustrates an interesting application of Erlang
outside of its normal domain of highly parallel soft
real-time applications, and shows how its strengths
make it well-suited for this sort of problem.

This tool served as a “back door” for getting Erlang into
DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY

Using this tool, users can reap several benefits:
Pre-filter encoded data streams, lessening the need for
expensive decoding.
Protect infrastructure that provides decoding services
but is itself vulnerable
Inspect encoded streams within incurring the overhead
of decoding.

This talk illustrates some interesting challenges when
inspecting encoded streams of data, especially in a
performance-critical way, and gives some possible
solutions.
This talk illustrates an interesting application of Erlang
outside of its normal domain of highly parallel soft
real-time applications, and shows how its strengths
make it well-suited for this sort of problem.

This tool served as a “back door” for getting Erlang into
DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY

Using this tool, users can reap several benefits:
Pre-filter encoded data streams, lessening the need for
expensive decoding.
Protect infrastructure that provides decoding services
but is itself vulnerable
Inspect encoded streams within incurring the overhead
of decoding.

This talk illustrates some interesting challenges when
inspecting encoded streams of data, especially in a
performance-critical way, and gives some possible
solutions.
This talk illustrates an interesting application of Erlang
outside of its normal domain of highly parallel soft
real-time applications, and shows how its strengths
make it well-suited for this sort of problem.

This tool served as a “back door” for getting Erlang into
DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY

Using this tool, users can reap several benefits:
Pre-filter encoded data streams, lessening the need for
expensive decoding.
Protect infrastructure that provides decoding services
but is itself vulnerable
Inspect encoded streams within incurring the overhead
of decoding.

This talk illustrates some interesting challenges when
inspecting encoded streams of data, especially in a
performance-critical way, and gives some possible
solutions.
This talk illustrates an interesting application of Erlang
outside of its normal domain of highly parallel soft
real-time applications, and shows how its strengths
make it well-suited for this sort of problem.

This tool served as a “back door” for getting Erlang into
DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY

Using this tool, users can reap several benefits:
Pre-filter encoded data streams, lessening the need for
expensive decoding.
Protect infrastructure that provides decoding services
but is itself vulnerable
Inspect encoded streams within incurring the overhead
of decoding.

This talk illustrates some interesting challenges when
inspecting encoded streams of data, especially in a
performance-critical way, and gives some possible
solutions.
This talk illustrates an interesting application of Erlang
outside of its normal domain of highly parallel soft
real-time applications, and shows how its strengths
make it well-suited for this sort of problem.

This tool served as a “back door” for getting Erlang into
DVLabs.

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

SUMMARY
Getting Erlang Accepted at DVLabs

Initially, Erlang suffered from a “not invented here” type
mentality, and a fear that “no one knows Erlang”.
This tool really couldn’t have been written to run
efficiently very easily in any other language.
Thanks to this tool, we’ve encouraged adoption of
Erlang in various other portions of the enterprise:

A compiler written in Erlang serves as the first stage of
our build process.
Erlang is now being integrated into various testing tools
that we use for quality assurance and threat analysis.
Interesting tools used for static analysis of binaries are
being written in Erlang (maybe something to talk about
at Erlang Factory 2011?)

SCREAM

Rob King

Introduction
The Problem

The Base64
Algorithm

Regular Expressions

The Algorithm
Ways of Solving the
Problem

Encoding Operations

Performance
Expression
Optimization

Performance
Analysis

Implementation
and Usage
Common Use Cases

Caveats

Summary

FIN
Contact Information

Rob at Work: rking@tippingpoint.com
Rob at Home: jking@deadpixi.com

	Introduction
	The Problem
	The Base64 Algorithm
	Regular Expressions

	The Algorithm
	Ways of Solving the Problem
	Encoding Operations

	Performance
	Expression Optimization
	Performance Analysis

	Implementation and Usage
	Common Use Cases
	Caveats

	Summary

