
Erlang Multicore support

Behind the scenes



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-282

Erlang VM (BEAM) when we started

 Virtual register machine which scheduled light weight 
processes 

– One single process scheduler and one queue per priority 
level

– Switching between I/O operations and process scheduling

 I/O drivers and “built in functions” (native functions) had 
exclusive access to the data structures

– Network code 
– ETS tables
– Process inspection etc



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-283

Perfect program for using multicore

 A lot of small units of execution
 The parallel mindset has created applications just 

waiting to be spread over several physical cores



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-284

Conversion steps

 Multiple schedulers
 Parallel I/O
 Parallel memory allocation
 Multiple run-queues and generally less global locking



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-285

Multiple schedulers

 Tools
– Locking order and lock-checker
– Ordinary test cases
– Benchmarks (synthetic)

 Techniques
– Own thread library (Uppsala University)
– Lock tables and custom lock implementation for processes
– Lots of conventional mutexes

 Result
– One scheduler per logical core

 Insights
– You will have to make memory/speed tradeoffs
– Lock order enforcement is very helpful



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-286

Parallel I/O

 Tools
– More simple benchmarks
– Customer systems
– Intuition (or – the problem was obvious…)

 Techniques
– More fine granular locking
– Locking on different levels depending on I/O driver implementation
– Scheduling of I/O-operations

 Result
– Real applications parallel…

 Insight
– Doing things at the right time can vastly reduce complexity



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-287

Multiple allocators

 Tools
– Even more benchmarks
– vTune (Intel-specific)
– Thread profiler (Intel-specific)

 Techniques
– Each scheduler has it’s own instance of memory allocators
– The “malloc” implementation was already our own
– Locks are still needed as one scheduler might free another 

schedulers memory

 Result
– Greatly improved performance for CPU intense applications

 Insight
– Not only execution has to be distributed over cores



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-288

Multiple run-queues and generally less 
global locking
 Tools

– Custom lock counting implemented (not cpu-specific)
– More massive multicore CPU’s to test on (Tilera, Nehalem)
– More customer code from more projects

 Techniques
– Distributing data over the schedulers
– Load balancing at certain points
– More fine granular locking (ETS Meta- and shared tables)
– Reimplementation of distribution marshaling to remove need for 

sequential encode/decode
 Results

– Far better performance on massive multicore systems
– Nehalem performance great, but core2 still problematic

 Insight
– No global lock will ever fail to create a bottleneck



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-289

Multiple runq-ueues
Erlang SMP VM (R13) 

Scheduler #1 

Scheduler #3

Scheduler #2

runqueue

Erlang VM

runqueue

runqueue

migration
logic



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2810

Migration logic

 Keep the schedulers equally loaded
 Load balancing after a specific amount of reductions

– Calculate an average run-queue length
– Setup migration paths

 Each scheduler migrates jobs until happy
 If a scheduler has suddenly no job, it starts stealing 

work
 If, at load-balancing, the logic detects to little work for 

the schedulers, some will be temporarily inactivated



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2811

Example of performance gain w/ 
multiple run-queues in TilePro64



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2812

Comparing “Clovertown” Xeon E5310 
to “Gainstown” Xeon X5570

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

7

8

9

10
Nehalem
Core

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

Nehalem
Core



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2813

Insights

 No global lock ever goes unpunished
 Data as well as execution has to be distributed over cores

– Malloc and friends will be a bottleneck

 You will have to make memory/speed tradeoffs
 New architectures will give you both new challenges and 

performance boosts
– Revise and rewrite as processors evolve

 Doing things (in the code) at the right time can reduce 
complexity as well as increase performance

 Take the time to use third party tools and to write your 
own.

 Work incrementally



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2814

Tools we’ve used

 Lock checker (implemented in VM) and strict locking 
order

 vTune and thread profiler
 oProfile
 Lock counter (implemented in VM)
 Acumem (www.acumem.com)
 Valgrind
 Benchmarks

– Customers
– Open Source

 Percept (Erlang application parallelism measurement 
tool)

http://www.acumem.com/


© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2815

What now?

 Non uniform memory access
– Schedulers private memory near core
– Distribute processes smarter, taking memory access into 

account
– …

 Delayed deallocation to avoid allocator lock conflicts
– Especially important for Core systems

 Developing our libraries
 Using less memory?
 More measuring, benchmarking, customer tests…



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2816


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

