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Why Erlang?
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Erlang's history 
is a microcosm of 

FP's history:
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It’s been used 
for decades 

by a select few... 
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… and now 
everybody 
is using it.
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Why Erlang 
now?

8

Friday, March 26, 2010



#1
We need
Functional 

Programming.
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#2
Lots of services 

behave like
telephony switches.
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Why Scala?
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#1
Java is
old …,
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#1
… but people 
want to keep 

their JVM/.NET 
investment.
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#2
The power 

of types
compel you!
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#3
Composability 
and scalability

features.
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#4
The marriage

of OOP and FP.
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What is 
Scala?
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Martin Odersky

• Helped design java generics.

• Co-wrote GJ that became 
javac (v1.3+).

• Understands Computer 
Science and Industry.
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Martin Odersky

• Inspired by:

• Haskell.

• Prolog.

• … and Erlang!
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Appealing if you like:

• Rigor.

• Deeply thought-through 
principles.

• Static typing.
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Not appealing if you find

• Rigor is tedious.

• Dynamic languages are 
easier.
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Succinct
Code
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$ scala
Welcome to Scala version 2.7.7 ...

scala> "hello" + "world"
res0: java.lang.String = helloworld
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scala> "hello".+("world")
res1: java.lang.String = helloworld
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same as

object.method(arguments)
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object method arguments
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Almost any 
character allowed

pseudo operator overloading.

Method Names
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Type
Inference
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Department of Redundancy Department
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var count = 0

Read-write variable
28

val name = “Dean Wampler”

Read-only “variable”

Type inferencing in Scala

val map = Map(“name” -> “Dean”, 
              “age” -> 29, …)
val tuple = (0, “two”, 3.14159)
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Succinct
Types
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class Complex {
  private double real;  
  private double imag;  

  public Complex(double real, double imag) {  
    this.real = real;
    this.imag = imag;
  }
      
  public void double getReal() {return this.real;}  
  public void setReal(double real) { 
    this.real = real; 
  }  

  public void double getImag() {return this.imag;}  
  public void setImag(double imag) { 
    this.imag = imag; 
  }  
}

30

Typical Java.
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class Complex(
  var real: Double,
  var imag: Double)
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Typical Scala!

val c = new Complex(1.2, 3.4)
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Parameter list for c’tor

Class body is the
“primary” constructor

Makes the arg a field
with a reader, writer.

No class body {…}. 
nothing else needed 
(at least right now).
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class Complex(
  var real: Double,
  var imag: Double)
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Make the objects 
immutable!!
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class Complex(
  val real: Double,
  val imag: Double)

Should Be Immutable
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val c = new Complex(1.2, 3.4)
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More succinct.

case class Complex(
  val real: Double,
  val imag: Double)

Case Classes
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More succinct.

case class Complex(
      real: Double,
      imag: Double)

Case Classes

val c = Complex(1.2, 3.4)
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Default Values

Scala v2.8

val c = Complex(1.0) // real
val zero = Complex()

case class Complex(
      real: Double = 0.0,
      imag: Double = 0.0)
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To me, these types 
of classes feel a lot 
like Erlang Records.

Erlang Records

37

Scala gives you nice type checking.
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Arguments for 
Static Types

• Compile-time error 
checking.

• Run-time optimizations.
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User-defined
Operators
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… and our own datatypes.
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case class Complex(real: Double, 
                   imag: Double)
{
  def +(that: Complex): Complex =   
    Complex(real + that.real, 
            imag + that.imag)
  
  def -(that: Complex): Complex =   
    Complex(real - that.real, 
            imag - that.imag)  
  … 
}

“Operator overloading”

“operators”
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var c1 = Complex(1.2, 3.4)  
val c2 = Complex(4.3, 2.1) 
 
c1 + c2   // => (5.5, 5.5)  
c1 += c2  // same as c1 = c1+c2
c1 - c2   // => (-3.1, 1.3)

41

Example usage
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Functions vs. 
Objects

42
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They are first class...

Functions in Scala:
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and they are objects!
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Function Literals
f: (Double,Int) => String

44

f: Function2[Double,Int,String]

is equivalent to

Function2<Double,Int,String> f

(or in Java-speak)
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val l1 = Nil
val l2 = "c" :: l1
val l3 = "b" :: l2
val l4 = "a" :: l3

// => List(”a”,”b”,”c”)
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Interlude: Lists
Empty list

“cons” operator 
(method)
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def listmap[A,B](l: List[A]) (
 f: A => B): List[B] = l match {
  
  case head :: tail => 
   f(head) :: listmap(tail)(f)
  
  case Nil => Nil
}

46

Example

Friday, March 26, 2010



def listmap[A,B](l: List[A]) (
 f: A => B): List[B] = l match {
  
  case head :: tail => 
   f(head) :: listmap(tail)(f)
  
  case Nil => Nil
}

47

type params 2 arg lists

return type
pattern match

match on non-Nil list

match on Nil
Friday, March 26, 2010



val l1 = List(“1”, “2”, “3”)
val l2 = listmap(l1) { s =>
  val i = Integer.parseInt(s)
  i*i
}

// => List(1, 4, 9)

48

Try it out:

2nd argument:
function literal
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... sometimes works.

Point-Free Style
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val l2 = List(1, 4, 9)
def square(i: Int) = i * i
l2 map square 
// => List(1, 16, 81)
l2 map square map square
// => List(1, 256, 6561) 
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Using List.map
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… can also be 
functions!

Objects
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object Complex {
  def apply(real: Double, 
            imag: Double) =   
    new Complex(real + that.real, 
                imag + that.imag)
  … 
}

“Factory”
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When we use case:

val c = Complex(1.1, 2.2)

“singleton”
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class Logger(val level:…) {
  def apply(message: String) =
  { // pass to logging system
    log(level, message)
  }
}
val error = new Logger(ERROR)
… 
error(“Network error.”)

“function object”
53
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Traits
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Composable Units of Behavior
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Get composition 
through 

higher-order 
functions.
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Functional Languages
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Java

class Queue 
 extends Collection 
 implements Logging, Filtering
{ … }
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Java’s object model

• Good 

• Promotes abstractions.

• Bad

• No composition through 
reusable mixins.
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Like interfaces with 
implementations,
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Traits
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… or like 
abstract classes + 

multiple inheritance 
(if you prefer).
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Traits
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Example 

trait Queue[T] {
  def get(): T
  def put(t: T)   
}   

A pure abstraction (in this case...)
60
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class StandardQueue[T] 
          extends Queue[T] {  
  import ...ArrayBuffer  
  private val ab =
        new ArrayBuffer[T]  
  def put(t: T) = ab += t  
  def get() = ab.remove(0) 
  …  
}   

Concrete (boring) implementation
61

Friday, March 26, 2010



Log put 
trait QueueLogging[T] 
 extends Queue[T] {
  abstract override def put(
    t: T) = {  
   println("put: "+t)  
   super.put(t) 
  }
}   

62

Friday, March 26, 2010



Log put 
trait QueueLogging[T] 
 extends Queue[T] {
  abstract override def put(
    t: T) = {  
   println("put: "+t)  
   super.put(t) 
  }
}   

What is “super” bound to??

63
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val sq = new StandardQueue[Int]  
        with QueueLogging[Int]  
  
sq.put(10)  
// => put: 10
sq.put(20)  
// => put: 20

Example
64
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Mixin composition; 
no class required

65

Example

val sq = new StandardQueue[Int]  
        with QueueLogging[Int]  
  
sq.put(10)  
// => put: 10
sq.put(20)  
// => put: 20
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Stackable 
Traits

66
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Filter put 
trait QueueFiltering[T] 
 extends Queue[T] {
  abstract override def put(
    t: T) = { 
   if (veto(t)) 
     println(t+" rejected!")
   else  
     super.put(t) 
  }
  def veto(t: T): Boolean
}    67
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Filter put 
trait QueueFiltering[T] 
 extends Queue[T] {
  abstract override def put(
    t: T) = { 
   if (veto(t)) 
     println(t+" rejected!")
   else  
     super.put(t) 
  }
  def veto(t: T): Boolean
}    68

“Veto” puts
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val sq = new StandardQueue[Int]  
     with QueueLogging[Int]  
     with QueueFiltering[Int] { 
  def veto(t: Int) = t < 0
}

Defines “veto”

69
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for (i <- -2 to 2) {  
    sq.put(i)  
}  

// => -2 rejected!  
// => -1 rejected!  
// => put: 0  
// => put: 1  
// => put: 2  

loop from -2 to 2

70

Filtering occurred
before logging

Example use
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What if we 
reverse the order 

of the Traits?
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val sq = new StandardQueue[Int]  
     with QueueFiltering[Int]  
     with QueueLogging[Int]   { 
  def veto(t: Int) = t < 0
}

Order switched
72
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for (i <- -2 to 2) {  
    sq.put(i)  
}  

// => put: -2  
// => -2 rejected!  
// => put: -1  
// => -1 rejected!  
// => put: 0  
// => put: 1  
// => put: 2  

logging comes 
before filtering!
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Loosely speaking, 
the precedence 

goes right to left.
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“Linearization” algorithm
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Case
Classes
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class Complex(val real: Double, 
              val imag: Double)
{…}

object Complex{
 def apply(r:Double,i:Double) =
    new Complex(r, i)  
}

76

Recall:

This pattern is so common...
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case class Complex(
    real: Double, imag: Double)
{…}
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Equivalent:
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You also get an
unapply method...
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… and why is the keyword 
called case?

Friday, March 26, 2010



val c = Complex(…)
c match {
 case Complex(0.0, 0.0) =>
  println(“zero!”)
 case Complex(r, 0.0) =>
  println(“real: ”+r)
 case Complex(r, i) =>
  println(“(”+r+“,”+i+“)”)
}

79

Pattern Matching:

Invokes unapply
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For Loops: 
Sequence 

Comprehensions
80
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object CapsStartFor {

 def main(args: Array[String]) = {
  for {
   i <- 0 until args.length
   arg = args(i)
   if (arg(0).isUpperCase)
  }
    println(arg)
}}

// $ scalac CapsStartFor.scala
// $ scala -cp . CapsStartFor aB Ab AB ab
// Ab
// AB

81

“For” can have an arbitrary number 
of generators, conditions, assignments
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Concurrency 
through
Actors
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Scala’s Actor Model

• Patterned after Erlang’s.

• Allows shared, mutable state.

• But discouraged.
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Akka’s
Actors
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akkasource.org
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Akka

• Inspired by Erlang OTP.

• Clean-room Actor lib.

• Better performance.

• Adds supervisors, lifecycle 
management.
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“self” Display

draw

draw

??? error!

exit“exit”

2 Actors:
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First, the
Supervisor.
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object factory 
   extends SupervisorFactory {
 override def getSupervisorConfig =
{…}

val supervisor =
    factory.newSupervisor
supervisor.startSupervisor

88

next slide
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{
 SupervisorConfig(
  RestartStrategy(OneForOne, 3, 100),
  Supervise(
   new ShapeDrawingActor,
   LifeCycle(Permanent, 100)) :: Nil)
}
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Next, some
Support Types.
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package shapes

case class Point(
 x: Double, y: Double)    
  
abstract class Shape {
 def draw() 
}

abstract “draw” method

Hierarchy of geometric shapes
91
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case class Circle(
 center:Point, radius:Double) 
    extends Shape {
 def draw() = …
} 

case class Rectangle(
 ll:Point, h:Double, w:Double) 
    extends Shape {
 def draw() = …
}

concrete “draw” 
methods

Hierarchy of geometric shapes
92
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Finally, the
Actors.
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package shapes    
import …akka…actors._, Actor._  
object ShapeDrawingActor 
        extends Actor {    
 def init = {…} // startup   
 def receive = {    
   // pattern matcher to
   // handle each message
 } 
}  

Actor for drawing shapes
94
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receive = {    
 case s:Shape =>
   s.draw()
   sender ! "drawn"
 case "exit" =>
   println("exiting...")   
   sender ! "bye!"
   // exit
 case msg =>
   println("Error: " + msg)
   sender ! "Unknown: " + msg
}

95
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import shapes._
import …akka…actors.Actor._,
       …Self

def sendAndReceive(msg: Any) ={
 (ShapeDrawingActor !! msg) 
   match {

  case reply => println(reply)
 }
}

script to try it out
96

send and await reply
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… 
sendAndReceive(
  Circle(Point(0.0,0.0), 1.0))
sendAndReceive(
  Rectangle(Point(0.0,0.0), 2, 5))
sendAndReceive(3.14159)
sendAndReceive("exit")

// => Circle(Point(0.0,0.0),1.0)
// => drawn.
// => Rectangle(Point(0.0,0.0),2.0,5.0)
// => drawn.
// => Error: 3.14159
// => Unknown message: 3.14159
// => exiting...
// => bye!
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… 
sendAndReceive(
  Circle(Point(0.0,0.0), 1.0))
sendAndReceive(
  Rectangle(Point(0.0,0.0), 2, 5))
sendAndReceive(3.14159)
sendAndReceive("exit")

// => Circle(Point(0.0,0.0),1.0)
// => drawn.
// => Rectangle(Point(0.0,0.0),2.0,5.0)
// => drawn.
// => Error: 3.14159
// => Unknown message: 3.14159
// => exiting...
// => bye!
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…     
receive = {    
 case s:Shape => 
  s.draw()
  sender ! "drawn"

 case … 
 case … 
}  

pattern matching

A powerful combination!

polymorphism
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Recap
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Scala is...
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a better 
Java and C#,
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object-oriented
and 

functional,
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succinct, 
elegant,

yet
powerful.
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Thanks!
dean@deanwampler.com

@deanwampler

programmingscala.com
polyglotprogramming.com/talks
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