
Scala for Erlang
Programmers

1

Dean Wampler
dean@deanwampler.com

@deanwampler
polyglotprogramming.com/talks

Friday, March 26, 2010

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Co-author,
Programming

Scala

programmingscala.com

2

<shameless-plug/>

Friday, March 26, 2010

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com

3

Guest Editor,
IEEE Software

Special Issue on
Multi-paradigm Programming

computer.org/software

Friday, March 26, 2010

http://computer.org/software
http://computer.org/software

Why Erlang?
4

Friday, March 26, 2010

Erlang's history
is a microcosm of

FP's history:

5

Friday, March 26, 2010

It’s been used
for decades

by a select few...

6

Friday, March 26, 2010

… and now
everybody
is using it.

7

Friday, March 26, 2010

Why Erlang
now?

8

Friday, March 26, 2010

#1
We need
Functional

Programming.

9

Friday, March 26, 2010

#2
Lots of services

behave like
telephony switches.

10

Friday, March 26, 2010

11

...
Friday, March 26, 2010

Why Scala?
12

Friday, March 26, 2010

#1
Java is
old …,

13

Friday, March 26, 2010

#1
… but people
want to keep

their JVM/.NET
investment.

14

Friday, March 26, 2010

#2
The power

of types
compel you!

15

Friday, March 26, 2010

#3
Composability
and scalability

features.

16

Friday, March 26, 2010

#4
The marriage

of OOP and FP.

17

Friday, March 26, 2010

What is
Scala?

18

Friday, March 26, 2010

Martin Odersky

• Helped design java generics.

• Co-wrote GJ that became
javac (v1.3+).

• Understands Computer
Science and Industry.

19

Friday, March 26, 2010

Martin Odersky

• Inspired by:

• Haskell.

• Prolog.

• … and Erlang!

20

Friday, March 26, 2010

Appealing if you like:

• Rigor.

• Deeply thought-through
principles.

• Static typing.

21

Friday, March 26, 2010

Not appealing if you find

• Rigor is tedious.

• Dynamic languages are
easier.

22

Friday, March 26, 2010

Succinct
Code

23

Friday, March 26, 2010

$ scala
Welcome to Scala version 2.7.7 ...

scala> "hello" + "world"
res0: java.lang.String = helloworld

24

scala> "hello".+("world")
res1: java.lang.String = helloworld

Friday, March 26, 2010

same as

object.method(arguments)

25

object method arguments

Friday, March 26, 2010

Almost any
character allowed

pseudo operator overloading.

Method Names

26

Friday, March 26, 2010

Type
Inference

27

Department of Redundancy Department

Friday, March 26, 2010

var count = 0

Read-write variable
28

val name = “Dean Wampler”

Read-only “variable”

Type inferencing in Scala

val map = Map(“name” -> “Dean”,
 “age” -> 29, …)
val tuple = (0, “two”, 3.14159)

Friday, March 26, 2010

Succinct
Types

29

Friday, March 26, 2010

class Complex {
 private double real;
 private double imag;

 public Complex(double real, double imag) {
 this.real = real;
 this.imag = imag;
 }

 public void double getReal() {return this.real;}
 public void setReal(double real) {
 this.real = real;
 }

 public void double getImag() {return this.imag;}
 public void setImag(double imag) {
 this.imag = imag;
 }
}

30

Typical Java.

Friday, March 26, 2010

class Complex(
 var real: Double,
 var imag: Double)

31

Typical Scala!

val c = new Complex(1.2, 3.4)

Friday, March 26, 2010

Parameter list for c’tor

Class body is the
“primary” constructor

Makes the arg a field
with a reader, writer.

No class body {…}.
nothing else needed
(at least right now).

32

class Complex(
 var real: Double,
 var imag: Double)

Friday, March 26, 2010

Make the objects
immutable!!

33

class Complex(
 val real: Double,
 val imag: Double)

Should Be Immutable

Friday, March 26, 2010

val c = new Complex(1.2, 3.4)

34

More succinct.

case class Complex(
 val real: Double,
 val imag: Double)

Case Classes

Friday, March 26, 2010

35

More succinct.

case class Complex(
 real: Double,
 imag: Double)

Case Classes

val c = Complex(1.2, 3.4)

Friday, March 26, 2010

36

Default Values

Scala v2.8

val c = Complex(1.0) // real
val zero = Complex()

case class Complex(
 real: Double = 0.0,
 imag: Double = 0.0)

Friday, March 26, 2010

To me, these types
of classes feel a lot
like Erlang Records.

Erlang Records

37

Scala gives you nice type checking.

Friday, March 26, 2010

Arguments for
Static Types

• Compile-time error
checking.

• Run-time optimizations.

38

Friday, March 26, 2010

User-defined
Operators

39

… and our own datatypes.

Friday, March 26, 2010

case class Complex(real: Double,
 imag: Double)
{
 def +(that: Complex): Complex =
 Complex(real + that.real,
 imag + that.imag)

 def -(that: Complex): Complex =
 Complex(real - that.real,
 imag - that.imag)
 …
}

“Operator overloading”

“operators”

40

Friday, March 26, 2010

var c1 = Complex(1.2, 3.4)
val c2 = Complex(4.3, 2.1)

c1 + c2 // => (5.5, 5.5)
c1 += c2 // same as c1 = c1+c2
c1 - c2 // => (-3.1, 1.3)

41

Example usage
Friday, March 26, 2010

Functions vs.
Objects

42

Friday, March 26, 2010

They are first class...

Functions in Scala:

43

and they are objects!

Friday, March 26, 2010

Function Literals
f: (Double,Int) => String

44

f: Function2[Double,Int,String]

is equivalent to

Function2<Double,Int,String> f

(or in Java-speak)

Friday, March 26, 2010

val l1 = Nil
val l2 = "c" :: l1
val l3 = "b" :: l2
val l4 = "a" :: l3

// => List(”a”,”b”,”c”)

45

Interlude: Lists
Empty list

“cons” operator
(method)

Friday, March 26, 2010

def listmap[A,B](l: List[A]) (
 f: A => B): List[B] = l match {

 case head :: tail =>
 f(head) :: listmap(tail)(f)

 case Nil => Nil
}

46

Example

Friday, March 26, 2010

def listmap[A,B](l: List[A]) (
 f: A => B): List[B] = l match {

 case head :: tail =>
 f(head) :: listmap(tail)(f)

 case Nil => Nil
}

47

type params 2 arg lists

return type
pattern match

match on non-Nil list

match on Nil
Friday, March 26, 2010

val l1 = List(“1”, “2”, “3”)
val l2 = listmap(l1) { s =>
 val i = Integer.parseInt(s)
 i*i
}

// => List(1, 4, 9)

48

Try it out:

2nd argument:
function literal

Friday, March 26, 2010

... sometimes works.

Point-Free Style

49

Friday, March 26, 2010

val l2 = List(1, 4, 9)
def square(i: Int) = i * i
l2 map square
// => List(1, 16, 81)
l2 map square map square
// => List(1, 256, 6561)

50

Using List.map

Friday, March 26, 2010

… can also be
functions!

Objects

51

Friday, March 26, 2010

object Complex {
 def apply(real: Double,
 imag: Double) =
 new Complex(real + that.real,
 imag + that.imag)
 …
}

“Factory”

52

When we use case:

val c = Complex(1.1, 2.2)

“singleton”

Friday, March 26, 2010

class Logger(val level:…) {
 def apply(message: String) =
 { // pass to logging system
 log(level, message)
 }
}
val error = new Logger(ERROR)
…
error(“Network error.”)

“function object”
53

Friday, March 26, 2010

Traits

54

Composable Units of Behavior

Friday, March 26, 2010

Get composition
through

higher-order
functions.

55

Functional Languages

Friday, March 26, 2010

Java

class Queue
 extends Collection
 implements Logging, Filtering
{ … }

56

Friday, March 26, 2010

Java’s object model

• Good

• Promotes abstractions.

• Bad

• No composition through
reusable mixins.

57

Friday, March 26, 2010

Like interfaces with
implementations,

58

Traits

Friday, March 26, 2010

… or like
abstract classes +

multiple inheritance
(if you prefer).

59

Traits

Friday, March 26, 2010

Example

trait Queue[T] {
 def get(): T
 def put(t: T)
}

A pure abstraction (in this case...)
60

Friday, March 26, 2010

class StandardQueue[T]
 extends Queue[T] {
 import ...ArrayBuffer
 private val ab =
 new ArrayBuffer[T]
 def put(t: T) = ab += t
 def get() = ab.remove(0)
 …
}

Concrete (boring) implementation
61

Friday, March 26, 2010

Log put
trait QueueLogging[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 println("put: "+t)
 super.put(t)
 }
}

62

Friday, March 26, 2010

Log put
trait QueueLogging[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 println("put: "+t)
 super.put(t)
 }
}

What is “super” bound to??

63

Friday, March 26, 2010

val sq = new StandardQueue[Int]
 with QueueLogging[Int]

sq.put(10)
// => put: 10
sq.put(20)
// => put: 20

Example
64

Friday, March 26, 2010

Mixin composition;
no class required

65

Example

val sq = new StandardQueue[Int]
 with QueueLogging[Int]

sq.put(10)
// => put: 10
sq.put(20)
// => put: 20

Friday, March 26, 2010

Stackable
Traits

66

Friday, March 26, 2010

Filter put
trait QueueFiltering[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 if (veto(t))
 println(t+" rejected!")
 else
 super.put(t)
 }
 def veto(t: T): Boolean
} 67

Friday, March 26, 2010

Filter put
trait QueueFiltering[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 if (veto(t))
 println(t+" rejected!")
 else
 super.put(t)
 }
 def veto(t: T): Boolean
} 68

“Veto” puts

Friday, March 26, 2010

val sq = new StandardQueue[Int]
 with QueueLogging[Int]
 with QueueFiltering[Int] {
 def veto(t: Int) = t < 0
}

Defines “veto”

69

Friday, March 26, 2010

for (i <- -2 to 2) {
 sq.put(i)
}

// => -2 rejected!
// => -1 rejected!
// => put: 0
// => put: 1
// => put: 2

loop from -2 to 2

70

Filtering occurred
before logging

Example use
Friday, March 26, 2010

What if we
reverse the order

of the Traits?

71

Friday, March 26, 2010

val sq = new StandardQueue[Int]
 with QueueFiltering[Int]
 with QueueLogging[Int] {
 def veto(t: Int) = t < 0
}

Order switched
72

Friday, March 26, 2010

for (i <- -2 to 2) {
 sq.put(i)
}

// => put: -2
// => -2 rejected!
// => put: -1
// => -1 rejected!
// => put: 0
// => put: 1
// => put: 2

logging comes
before filtering!

73

Friday, March 26, 2010

Loosely speaking,
the precedence

goes right to left.

74

“Linearization” algorithm
Friday, March 26, 2010

Case
Classes

75

Friday, March 26, 2010

class Complex(val real: Double,
 val imag: Double)
{…}

object Complex{
 def apply(r:Double,i:Double) =
 new Complex(r, i)
}

76

Recall:

This pattern is so common...

Friday, March 26, 2010

case class Complex(
 real: Double, imag: Double)
{…}

77

Equivalent:

Friday, March 26, 2010

You also get an
unapply method...

78

… and why is the keyword
called case?

Friday, March 26, 2010

val c = Complex(…)
c match {
 case Complex(0.0, 0.0) =>
 println(“zero!”)
 case Complex(r, 0.0) =>
 println(“real: ”+r)
 case Complex(r, i) =>
 println(“(”+r+“,”+i+“)”)
}

79

Pattern Matching:

Invokes unapply

Friday, March 26, 2010

For Loops:
Sequence

Comprehensions
80

Friday, March 26, 2010

object CapsStartFor {

 def main(args: Array[String]) = {
 for {
 i <- 0 until args.length
 arg = args(i)
 if (arg(0).isUpperCase)
 }
 println(arg)
}}

// $ scalac CapsStartFor.scala
// $ scala -cp . CapsStartFor aB Ab AB ab
// Ab
// AB

81

“For” can have an arbitrary number
of generators, conditions, assignments

Friday, March 26, 2010

Concurrency
through
Actors

82

Friday, March 26, 2010

Scala’s Actor Model

• Patterned after Erlang’s.

• Allows shared, mutable state.

• But discouraged.

83

Friday, March 26, 2010

Akka’s
Actors

84

akkasource.org

Friday, March 26, 2010

Akka

• Inspired by Erlang OTP.

• Clean-room Actor lib.

• Better performance.

• Adds supervisors, lifecycle
management.

85

Friday, March 26, 2010

“self” Display

draw

draw

??? error!

exit“exit”

2 Actors:

86

Friday, March 26, 2010

First, the
Supervisor.

87

Friday, March 26, 2010

object factory
 extends SupervisorFactory {
 override def getSupervisorConfig =
{…}

val supervisor =
 factory.newSupervisor
supervisor.startSupervisor

88

next slide

Friday, March 26, 2010

{
 SupervisorConfig(
 RestartStrategy(OneForOne, 3, 100),
 Supervise(
 new ShapeDrawingActor,
 LifeCycle(Permanent, 100)) :: Nil)
}

89

Friday, March 26, 2010

Next, some
Support Types.

90

Friday, March 26, 2010

package shapes

case class Point(
 x: Double, y: Double)

abstract class Shape {
 def draw()
}

abstract “draw” method

Hierarchy of geometric shapes
91

Friday, March 26, 2010

case class Circle(
 center:Point, radius:Double)
 extends Shape {
 def draw() = …
}

case class Rectangle(
 ll:Point, h:Double, w:Double)
 extends Shape {
 def draw() = …
}

concrete “draw”
methods

Hierarchy of geometric shapes
92

Friday, March 26, 2010

Finally, the
Actors.

93

Friday, March 26, 2010

package shapes
import …akka…actors._, Actor._
object ShapeDrawingActor
 extends Actor {
 def init = {…} // startup
 def receive = {
 // pattern matcher to
 // handle each message
 }
}

Actor for drawing shapes
94

Friday, March 26, 2010

receive = {
 case s:Shape =>
 s.draw()
 sender ! "drawn"
 case "exit" =>
 println("exiting...")
 sender ! "bye!"
 // exit
 case msg =>
 println("Error: " + msg)
 sender ! "Unknown: " + msg
}

95

Friday, March 26, 2010

import shapes._
import …akka…actors.Actor._,
 …Self

def sendAndReceive(msg: Any) ={
 (ShapeDrawingActor !! msg)
 match {

 case reply => println(reply)
 }
}

script to try it out
96

send and await reply

Friday, March 26, 2010

…
sendAndReceive(
 Circle(Point(0.0,0.0), 1.0))
sendAndReceive(
 Rectangle(Point(0.0,0.0), 2, 5))
sendAndReceive(3.14159)
sendAndReceive("exit")

// => Circle(Point(0.0,0.0),1.0)
// => drawn.
// => Rectangle(Point(0.0,0.0),2.0,5.0)
// => drawn.
// => Error: 3.14159
// => Unknown message: 3.14159
// => exiting...
// => bye!

97

Friday, March 26, 2010

…
sendAndReceive(
 Circle(Point(0.0,0.0), 1.0))
sendAndReceive(
 Rectangle(Point(0.0,0.0), 2, 5))
sendAndReceive(3.14159)
sendAndReceive("exit")

// => Circle(Point(0.0,0.0),1.0)
// => drawn.
// => Rectangle(Point(0.0,0.0),2.0,5.0)
// => drawn.
// => Error: 3.14159
// => Unknown message: 3.14159
// => exiting...
// => bye!

98

Friday, March 26, 2010

…
receive = {
 case s:Shape =>
 s.draw()
 sender ! "drawn"

 case …
 case …
}

pattern matching

A powerful combination!

polymorphism

99

Friday, March 26, 2010

100

Recap

Friday, March 26, 2010

Scala is...

101

Friday, March 26, 2010

a better
Java and C#,

102

Friday, March 26, 2010

object-oriented
and

functional,
103

Friday, March 26, 2010

succinct,
elegant,

yet
powerful.

104

Friday, March 26, 2010

Thanks!
dean@deanwampler.com

@deanwampler

programmingscala.com
polyglotprogramming.com/talks

105

Friday, March 26, 2010

http://twitter.com/deanwampler
http://twitter.com/deanwampler
http://programmingscala.com
http://programmingscala.com
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

