
Inviso and Exago

Tracing and log analysis in multiple-node environments

Ulf Wiger, Aniko Nagyné Víg, Bartłomiej Puzoń
Erlang Solutions Ltd

Erlang Factory, San Francisco, 25 Mar 2010

Erlang Solutions Ltd.

Copyright 2009

Initial Problem

How to conduct safe and efficient run-time trace analysis on
distributed systems?

How to do advanced post-mortem log analysis?

(or indeed log analysis on running systems?)

Eventually reuse high-level properties from testing

The Protest project:
EU-funded research on Property-based Testing

Tracing and log analysis work package:

Copyright 2009

Tracing support in Erlang

The trace() BIFs

Low-level trace message generation

Dynamic control using Match Specifications

The DBG application

Command-line wrappers around the trace BIFs

(Redbug, a dbg alternative made by Mats Cronqvist)

Observer, Trace Tool Builder, etop, et, pman

Various loosely connected utilities

Percept, eprof, cprof, fprof, instrument

Profiling tools with different characteristics

Copyright 2009

Lots of functionality, Hard to Grep

ttb:format("tiger@durin-ttb", [{handler, et}])

(From Observer User’s Guide)

Inviso

“Inviso” – Latin: “to visit; inspect; look at”

Copyright 2009

Inviso – Distributed Trace Tool Builder

Part of OTP

Partly unfinished

API mainly intended for tool makers

Protest project contributions

Inviso Tracing tutorial:
http://www.trapexit.org/Inviso_tracing_tutorial

Onviso, a user-friendler API
http://www.trapexit.org/Tracing_with_Onviso

http://www.trapexit.org/Inviso_tracing_tutorial
http://www.trapexit.org/Tracing_with_Onviso

Copyright 2009

Inviso Architecture

Copyright 2009

Inviso Features

Start tracing simultaneously on multiple nodes

Collect and merge traces

Predefine “trace cases”

Meta-tracing

Pid/regname translation

Call/return value matching

“autostart” – tracing starts automatically at boot time

Overload protection – stop tracing if overload detected

Copyright 2009

Onviso

User-friendly API to Inviso

Set up and run tracing using only two commands

Shortcuts for commonly used trace patterns (inspired by Redbug)

Additional functionality

Non-destructive merge of trace logs

Log merge can be used for property-based testing

Useful defaults for merging and overload protection

Trace node automatically reconnects to restarting target nodes

Status: Work in Progress

Copyright 2009

Demo – Starting the Nodes

> client:init(ServerNode). > server:start().

> onviso:trace(...).

ClientNode ServerNode

TracerNode
onviso:trace([{server, loop, '_', []},
 {client, put, '_', []},
 {client, get, '_', return}],
 ['server@laptop',
 'client@laptop'],
 {all,[call]}).

mailto:'server@laptop
mailto:'server@laptop

Copyright 2009

Interrupting a Trace

One of the nodes can be restarted:

client@laptop> init:restart().

client@laptop> client:init('server@laptop').

By default Onviso will reconnect and resume tracing on the client node.

If the node restarts abruptly, some of the trace data may be lost (as the trace
buffers might not be flushed to the files).

Inviso (and thus, Onviso) can handle incomplete trace logs.

Copyright 2009

Stopping a Trace

Every trace call returns a trace reference identifier.
This id can be used to stop or merge a trace

> onviso:stop(Id).

The traces are collected to files and
distributed back to the Inviso control node

Copyright 2009

Onviso Log Merge – Defaults

You can merge the trace files more than once

Tracing is stopped automatically when merge is called

> onviso:merge(Id, void, void, shell). % result in the shell

> onviso:merge(Id, void, void, file).
% result in “outputId.txt” file
% other easy options {file, Name}, {file_prefix, Prefix}

Copyright 2009

Merge a Trace - custom function

BeginFun = fun(_InitData) ->
 {ok, 0}
 end.

WorkFun = fun(_Node, _Trace, _PidMapping, Count) ->
 {ok, Count + 1}
 end.

EndFun = fun(Count) ->
 io:format("Got ~p traces.~n", [Count])
 end.

> onviso:merge(1, BeginFun, WorkFun, EndFun).

(Typically write to file)

(Format/filter trace data)

(Initialize state)

Copyright 2009

Onviso Command line interface

Example of a higher-level
trace tool

Help testers and support
staff define and/or
execute trace cases

(inviso@debian)6> cli:start().
Onviso Demo GUI
==

 > Main Menu
--
 1) Add trace case
 2) List/Run trace cases
 3) Save configuration to file
 4) Load configuration from file
 5) Set the magic cookie
 6) Exit
[Q] Choice [1-6] : 6

 Exiting...ok

Exago

εξαγω � Ανχιεντ Γρεεκ: � βρινγ φορτη�

Copyright 2009

A “log mining” Approach

Identify a set of logs

Tell Exago how to extract timestamp and session id from each

Possibly define a time offset per log

Simplify log entries using an “abstraction function”

Define a finite state machine (FSM) for the analysis

Exago will present sessions that do not conform with the FSM

Copyright 2009

Log Correlation

Front-end

Back-end

Exago

Filter/select

Abstract

Validate

Copyright 2009

Abstraction Functions

transaction_conf = none,
session_conf =
 #sess_conf{
 sort = timestamp,
 abstr_fun =
 fun(Trs) ->
 lists:map(
 fun({Timestamp, AbstrVal, File}) ->
 L = string:tokens(filename:basename(File),"_."),
 AbstrCommand =
 case L of
 ["mt", "sms" | _Rest] ->
 mt_sms_accepted;
 ["mtcq", "sms" | _Rest] ->
 mtcq_sms_billed;
 ...
 end,
 {Timestamp, AbstrCommand}
 end, Trs)
 end,
 ...},

Copyright 2009

Case Study: SMS Gateway

Gateway times out, delivers a failure report to user

SMSC finally reports successful delivery, gateway forwards it

User gets conflicting reports + could interfere with SMS retry

2 occurrences among 20,000 sessions in the log

Exago pilot duration: 2 days

System had been in production for two years...

[{"2008-08-07_05:34:10:862",mtcq_sms_billed},
 {"2008-08-07_05:34:15:864",timeout},
 {"2008-08-07_05:34:15:864",{mt_sms_del_failed,{"timedout"}}},
 {"2008-08-07_05:34:21:275",mt_sms_accepted},
 {"2008-08-07_05:34:29:010",mt_sms_del_succ}]

Copyright 2009

Exago Status

Open Source release imminent

Two case studies

Finding bugs in a well-tested stable system

Using Exago in the early stages of development

Need to support more log formats

Improve usability

Test scalability

Investigate applying QuickCheck’s Temporal Relations

Copyright 2009

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

