Introducing Erlang into a large
company

Tactics

A Test Drive

* Choose a nasty problem that needs to solved
that nobody wants to touch

* Bonus if there has already been at least one
failure

* Even better, a problem that doesn’t imply a
long term commitment

What You Get

Nobody is going to argue about your choice of
tool

Failure will be no worse than the last guy

You will have a solid sense of language
capabilities

You will have a convincing case if you
succeed.

Merging Onto the Highway

Choose a problem that you have solved before

Which presents known difficulties for your
usual tool chain

Take advantage of current tools — don’t
reinvent wheels

Focus on time-to-market
Management is always looking for a reason ;)

What You Get

Protection - it is harder to cancel a performant
system in production than an experiment

Writing a fault-tolerant non-stop systems is
not good for job security

Good reputation
Opposition
Blame

Disregard

Reaching 60 MPH

* Choose a nasty problem — a critical one
* Use Erlang for the a central component

* Bonus if you can demonstrate interop with
standard libraries and other languages

What You Get

Your life will be easier as the system will
stabilize faster

You will end up integrating the standard OTP
with your internal build tools

You will write interfaces for common internal
libraries

This will make it easier for coworkers to
bootstrap Erlang into their usual workflow

Some Successes

* Reduced migration time (delicious)
e Scaling serving infrastructure (BOSS)

* Indexing pipeline control (Vertical Search
Platform)

Obstacles Encountered On the Way

Bumps Along the Road . ..

* Describing distributed asynchronous
architectures to most engineers is HARD

 When you remove the usual boot/restart
cycles you uncover memory management
oroblems

* Doing this doesn't make you popular

* Pushing engineers out of their comfort zone is
risky

. .. Lots

-or/if/while loops are hard imperative
orogrammers to let go of

Just because Erlang scales out of the box to
~100 nodes doesn't mean it is a “real
distributed language “

Java which scales to 1 out of the box is ©
Security concerns

What Erlang Has Taught Us

Some Surprising Things

C/C++/Java programmers get really annoyed
when you call Erlang a systems language ;)

Single assignment is a great simplifier

Invariant variables don’t slow things down as
much as supposed

We haven’t missed objects very much

Erlang seems to be what Alan Kay refers to as
the essence of OOP

How easy and directly enlightening reading a
stack trace can be

The satisfaction that comes from debugging a
running system with precision and flexibility

Functional decomposition makes system
tracing so much easier

A lot of features that people are trying to
develop for large scale systems are already
solved in Erlang

* Being a fan-boy is fun - but there is room for
other languages and Erlang doesn't have to be
tops for everything

Some New Approaches

More emphasis on specification
Think more type less

‘I’and ‘receive’ are more useful than ‘for’ and
‘extends’ for many of the problems we have to
solve

Program for what you expect rather than what
you fear

Erlang allows you to focus on the harder
problems in distributed computing

It Has Been A lot of Fun

Thanksto. ..

Joe, Robert, Mike, Claes

The OTP team
Erlang Consulting
The Erlang Community

