
Webmail for Millions
Powered by Erlang

Scott Lystig Fritchie / Joseph Wayne Norton
fritchie@geminimobile.com / norton@geminimobile.com

Gemini Mobile Technologies, Inc.

March 25, 2010

Erlang Factory San Francisco 2010 1/30

Road Map

• Introduction: who, what, why. . .

• Architecture at high altitude

• UBF’s many, many uses

• One-slide introduction to the CAP Theorem

• A new distributed key-value store: Hibari

• Testing!

• What worked, what didn’t

Erlang Factory San Francisco 2010 2/30

Introduction
Who is Gemini Mobile Technologies?

• Founded: July, 2001

• Offices: San Mateo, CA; Shibuya, Tokyo; Star City, Beijing

• Milestones:
• 2003: Multimedia messaging service (MMS), Vodafone Japan
• 2005: MMSC, Nextel International
• 2006: MMSC, eMobile Japan
• 2008: eXplo(tm) service, China Unicom
• 2009: International MMS gateway, NTT docomo

• Investors: Goldman Sachs, Ignite, Mizuho Capital, Tokyo
MUFJ, Nomura, Access, Aplix

• Erlang: Apps in Japan & China telecoms use for 3 years

Erlang Factory San Francisco 2010 3/30

Introduction
Does the World Need Another Webmail System?

• Stand out from the crowd

• Replace something else. . .

Erlang Factory San Francisco 2010 4/30

Introduction
The Something Else

• Based upon Oracle DBMS

• Could not easily and cheaply scale to GByte mailboxes

• Not Gmail-like enough, not customizable enough

• Could not easily support mailbox convergence

Erlang Factory San Francisco 2010 5/30

Introduction
Must-Have Features

• UI at least as rich as Gmail, preferably more

• Very high quality, reliability, and customizable

• Focused customization for Japanese customers, Japanese
language

• PC clients, “smart” handsets, not-so-dumb legacy handsets

• Cheap! Supported only by advertising or very low monthly fee

• Must integrate with legacy authentication, monitoring, billing,
and full-text search services

Erlang Factory San Francisco 2010 6/30

Road Map

• Introduction: who, what, why. . .

• Architecture at high altitude

• UBF’s many, many uses

• One-slide introduction to the CAP Theorem

• A new distributed key-value store: Hibari

• Testing!

• What worked, what didn’t

Erlang Factory San Francisco 2010 7/30

Multi-Tier Architecture
20K Meter View

MOBILE

HTTPSMTP/POP/IMAP

PCISPMTA

LDAP

O&M

FRONT API

DIRECTORY STORE DATA STORE

AUTH API

CLIENT API

BACK API

Erlang Factory San Francisco 2010 8/30

Multi-Tier Architecture
10K Meter View

PC

HTTP SMTP/POP/IMAP

MOBILE ISP MTA

LDAP

MNESIAMNESIAHibari AUTH/PROV

HTTP

INDEXSEARCHBODYSCAN/AD SVC

A2S I/F

M2CI I/F M2FE AUTH I/F

M2FE I/F

BODYSCAN I/F M2SI I/FM2FE JOBQ I/FM2BE I/F

Erlang Factory San Francisco 2010 9/30

Erlang
What’s It Doing?

• JSON-RPC with the customer’s Web browser-based UI (based
on UBF)

• SMTP, POP, and IMAP with the external email world

• HTTP and LDAP with authentication and full-text indexing
services

• UBF for most inter-application communication

• Interface with C++ components for speed, legacy protocol
support, and code re-use

• Application logging and tracing

• Transaction logging for message tracing

• Custom distributed, scalable key-value store for all persistent
data (English: Skylark, Japanese: Hibari)

• Mnesia for job queuing and multi-indexed profile data

Erlang Factory San Francisco 2010 10/30

Screen Shot

Every presentation has to have at least one screen shot. . .

Erlang Factory San Francisco 2010 11/30

Screen Shot
Yes, Really

?
Erlang Factory San Francisco 2010 12/30

Road Map

• Introduction: who, what, why. . .

• Architecture at high altitude

• UBF’s many, many uses

• One-slide introduction to the CAP Theorem

• A new distributed key-value store: Hibari

• Testing!

• What worked, what didn’t

Erlang Factory San Francisco 2010 13/30

UBF: The Communication Workhorse
What Is It?

• UBF is RPC with a formal, precise specification

• Abstract syntax, concrete (“on the wire”) syntax, and
meta-level protocol

• Strict enforcement of protocol specification: the “contract”

• Erlang server implementation, clients in various languages

• Simple yet elegant, concise yet expressive

• Easy to extend and to customize to our needs

Many, many thanks to Joe Armstrong, UBF’s designer and original

implementor.

Erlang Factory San Francisco 2010 14/30

UBF: The Communication Workhorse
Tier/Application Layers

• Customer Interface API: UBF over JSON-RPC to/from the
Web browser

• Authentication API: interface to custom and legacy
authentication services

• Front End API: includes more protocols, O&M interfaces

• Back End API: low-level API for managing mailboxes, profiles,
address book/vCard data, filtering rules, etc.

• M2G API: Separate C++ app for legacy services and protocol
support

Erlang Factory San Francisco 2010 15/30

UBF: The Communication Workhorse
One Contract, Many Uses

Erlang Factory San Francisco 2010 16/30

UBF: The Communication Workhorse
Contract Statistics

API Contracts Methods Types Leaf Types Records

Auth 2 26 96 53 4

Client 5 28 288 231 13

Front 11 61 469 358 32

Back 10 29 186 136 5

Total 28 85 628 443 35

Erlang Factory San Francisco 2010 17/30

“Front End” Add a Draft Message
Same Contract. . .

+TYPES
mail_add_draft_req() = {mail_add_draft

, authinfo()
, maildraft_olduid()?
, mailheaders()
, draftbody_parsed()
, [rfc2396_url()]
, maildraft_options()?
, timeout_or_expires()};

mail_add_draft_res() = {ok, uid(), [mimepart_url()]} | folder_res_err();
+ANYSTATE
mail_add_draft_req() => mail_add_draft_res();

Erlang Factory San Francisco 2010 18/30

“Front End” Add a Draft Message
. . .Different Protocols

Client API - add a draft mail (UBF, EBF, and ETF style)

{ mail_add_draft, authinfo(), maildraft_olduid()?, mailheaders(), draftbody_parsed()
, [rfc2396_url()], maildraft_options()?, timeout_or_expires() }

=> { ok, uid(), [mimepart_url()] } | folder_res_err();

Client API - add a draft mail (JSON-RPC style)

request {
"version" : "1.1",
"id" : "Y101",
"method" : "mail_add_draft",
"params" : [maildraft_olduid()?, mailheaders(), draftbody_parsed()

, [rfc2396_url()], maildraft_options()?, timeout_or_expires()]
}
response {

"version" : "1.1",
"id" : "Y101",
"result" : {"$T" : [{"$A" : "ok"}, uid(), [mimepart_url()]]}

| folder_res_err() | null,
"error" : error()?

}

Erlang Factory San Francisco 2010 19/30

Road Map

• Introduction: who, what, why. . .

• Architecture at high altitude

• UBF’s many, many uses

• One-slide introduction to the CAP Theorem

• A new distributed key-value store: Hibari

• Testing!

• What worked, what didn’t

Erlang Factory San Francisco 2010 20/30

One-Slide Intro to CAP
Nathan Hurst, http://blog.nahurst.com/visual-guide-to-nosql-systems

Erlang Factory San Francisco 2010 21/30

Hibari
Key-Value Storage for (Almost) Everything

The only (?) key-value DB that offers on strong consistency. . .

• “Chain replication” for strong consistency
• See paper by van Renesse and Schneider, OSDI 2004

conference proceedings
• Previous slide: “CA” (Consistency, Availability)

• Consistent hashing for distributed key placement

• Automatic repair of crashed/rebooted bricks

• MD5 checksums on all data on disk

• Replication factor (chain length) changeable online

• Cluster size (number of chains) changeable online

Erlang Factory San Francisco 2010 22/30

Hibari
Open Source Release, Soon

• Working on license details, code prep, and documentation

• Planning to release via GitHub by mid-May 2010

Erlang Factory San Francisco 2010 23/30

Mnesia
Storage for Everything Else

• User profile storage: indexing & retrieval by various attributes

• Job queuing: notifications to handset, notifications to external
text indexer, . . .

• Doable with Hibari-based storage, but Mnesia was easier

Erlang Factory San Francisco 2010 24/30

Road Map

• Introduction: who, what, why. . .

• Architecture at high altitude

• UBF’s many, many uses

• One-slide introduction to the CAP Theorem

• A new distributed key-value store: Hibari

• Testing!

• What worked, what didn’t

Erlang Factory San Francisco 2010 25/30

Testing, Testing, Testing, Testing
. . . and more testing . . .

• Unit tests via EUnit (Erlang)

• Typical hand-coded test cases (Python)

• QuickCheck models
• Automatically derived from UBF contracts, easy to create

custom generators whenever necessary
• Hand-made generators & models to test other code

• Load/stress testing (Erlang, Python)

• Remember: Implementation & testing is 90% of your effort.
Carrier testing is the other 90%.

Erlang Factory San Francisco 2010 26/30

Post (almost) Mortem
Stuff We’ll Repeat

• Erlang, the secret sauce
• Ericsson’s support of Erlang/OTP is wonderful

• UBF

• QuickCheck

• Auto-compilation of UBF contract → QuickCheck generators

• Documentation tools: Git, AsciiDoc, Graphviz, “mscgen”

• Automate everything possible: regression tests, performance
tests, cluster setups, post-mortem log file gathering, . . .

• Test in various environments:
• Exactly the same hardware as customer, on really old & slow

hardware, and on a single box/laptop

Erlang Factory San Francisco 2010 27/30

Post (almost) Mortem
Stuff We Would Probably Do Differently

• Negotiate “less aggressive” schedule
• Keep dreaming, Scott. . . .

• Buy more hardware

• Always test X & Y before customer tries doing X & Y
• Get their test plan, then do it before they do.

• Better and more peer code review

• Always revisit and cleanup “initial” prototypes

• 100% automated unit test and code coverage analysis

Erlang Factory San Francisco 2010 28/30

Summary

• Technically, Erlang was a great fit for this large system.
• Used another language (C++) whenever convenient.

• UBF is a very good tool for design, implementation, and
testing phases of a large project.

• Combining UBF and QuickCheck was invaluable in finding
bugs that otherwise would’ve been discovered by the
customer.

• It’s feasible to develop real-time apps on top of a distributed
key-value database.

• Hibari’s “strong consistency” support is a large advantage.

Erlang Factory San Francisco 2010 29/30

Thank You Very Much!

• Look for Hibari announcements in April-May
• Email me or Joe if you cannot wait. . . .

• UBF code is already available at GitHub
• http://github.com/norton/ubf
• http://github.com/norton/ubf-abnf
• http://github.com/norton/ubf-eep8
• http://github.com/norton/ubf-jsonrpc

Erlang Factory San Francisco 2010 30/30

