sriak

from the inside

Justin Sheehy Basho Technologies

=3

Riak Is
a scalable, highly-available, distributea
open-source key/value store.

sriak

=3

Riak 1s
a scalable, highly-available, distributea
open-source key/value store...

..but that's not what I'm here to tell you about.

sriak

Riak Is
a system built using Erlang/OTP for
robustness, flexibility, and simplicity.

o sriak

Riak Is
a system built using Erlang/OTP for
robustness, flexibility, and simplicity...

.50 today, I'll talk about how that helped us.

o sriak

NON-toPICS

Riak Core'’s Implementation Detalls
-- essential distributed systems infrastructure
Riak Features
-- anti-entropy: hinted-handoff and read-repair
-- Javascript map/reduce
-- storage subsystems: bitcask, innostore...

o sriak

client application

protobufs http

riak_client

dynamo model FSMs

The Riak key/value stack: riak core

vhode master

k/v vnode

storage engine

e sriak

LS el @hlyee s Ele ¢ (ol ColLlsE:

I

T

storage engine storage engine storage engine

(this represents a part of the k/v section of the supervisor tree)

e sriak

client application

protobufs http

riak_client

dynamo model FSMs

The Riak key/value stack: riak core

vhode master

k/v vnode

storage engine

e sriak

client application

client application client application
protobufs http protobufs http protobufs http
riak_client

riak_client riak_client

dynamo model FSMs dynamo model FSMs dynamo model FSMs

vnode master vnode master vnode master

k/v vnode k/v vnode k/v vnode

storage engine storage engine storage engine

o | sriak

let’s start at the top

more than one way to access
key/value data

interchangeable:
use them both

basho

client application

protobufs

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

sriak

oet/put Is representation transfer client application

HTTP is a great transfer protocol Rl

riak_client
wbiquity
*flexibility
*interoperability

riak core

This is why we wrote webmachine!

storage engine

o sriak

throughput matters! client application

protobufs are fast, simple, compact [gelgotelliE I http

riak_client
*{packet,4}
dynamo model FSMs
-{active,once} riak core

vhode master

‘socket owner handles both _
TCP packets and
internal response messages

o sriak

both the protobuf and HT TP entry client application

points use the same interface brotobufs I http

erlang native interface as general API riak_client

. dynamo model FSMs
parameterized module over

ecoordinator node

cient insance ic
: ; k/v vnode
all access into Riak defined here _

riak core

storage engine

o sriak

client application

| | . protobufs I http
simple interface, complex semantics

riak_client

direct inspiration: Amazon’s Dynamo dynamo model FSMs

riak core

-gen_fsm helps a lot here

- - - de mast
‘interactions with N other nodes
*multiple phases of interaction
*version vector resolution
storage engine

o sriak

©

basho

digression: testing tricky FSMs is tricky

< dynamo model FSMs)

QuickCheck to the rescuel

-property-based / model-based tests

‘bugs may only appear with unexpected

combinations of events

*shrinking these combinations helps find

minimal fallure cases

N f (o

K

client application

| | . protobufs I http
simple interface, complex semantics

riak_client

direct inspiration: Amazon’s Dynamo dynamo model FSMs

riak core

-gen_fsm helps a lot here

- - - de mast
‘interactions with N other nodes
*multiple phases of interaction
*version vector resolution
storage engine

o sriak

client application

protobufs I http

FSMs run anywhere, use everything riak_client

dynamo model FSMs

Riak Core: fundamental distribution riak core

arbitrary number of storage nodes
each contributing to the whole

e sriak

client application

protobufs I http

gen_server as a multiplexer riak_client
and well-known entry point dynamo model FSMs

riak core

one host, many virtual nodes vnode master

k/v vnode

iNnstantiate vnodes as needed

o sriak

client application

disposable, per-partition actor pmtobufs "
@ ecess to local data
riak_client

dynamo model FSMs

enable parallelism & fault-tolerance
the Erlang way (per-process) riak core

vnode master

node-local k/v storage abstraction k/v vnode

storage engine

©

basho

ike an Erlang “behaviour”
separating development of disk
or other storage from distribution

steps forward w/o breaking code
(innostore, bitcask, ...)

all storage systems look the same
©

basho

client application

protobufs I http

riak_client
dynamo model FSMs
riak core
vnode master

k/v vnode

storage engine

client application

protobufs I http

riak_client

dynamo model FSMs

it's just a key/value store riak core

vnode master

k/v vnode

from the bottom storage engine

basho

from the top client application

protobufs I http

riak_client

dynamo model FSMs

it's just a key/value store riak core

vnode master

k/v vnode

storage engine

basho

client application

protobufs I http

riak_client

dynamo model FSMs

it's a distributed system at heart riak core

vhode master

k/v vnode

storage engine

basho

client application

protobufs I http

riak_client

dynamo model FSMs

carefully managed complexity... riak core

vhode master

k/v vnode

storage engine

basho

client application

protobufs I http

riak_client

dynamo model FSMs
allows simplicity at the edges riak core
vnode master

k/v vnode

storage engine

o sriak

http://www.basho.com

follow twitter.,com/basho/team
rlak-users@lists.oasho.com
#riak on Freenode

o sriak

