
Justin Sheehy Basho Technologies

from the inside

basho

Riak is
a scalable, highly-available, distributed

open-source key/value store.

basho

Riak is
a scalable, highly-available, distributed

open-source key/value store.

...but that’s not what I’m here to tell you about.

...

basho

Riak is
a system built using Erlang/OTP for
robustness, flexibility, and simplicity.

basho

Riak is
a system built using Erlang/OTP for
robustness, flexibility, and simplicity....

...so today, I’ll talk about how that helped us.

basho

non-topics

Riak Core’s Implementation Details
 -- essential distributed systems infrastructure
Riak Features
 -- anti-entropy: hinted-handoff and read-repair
 -- javascript map/reduce
 -- storage subsystems: bitcask, innostore...

basho

client application

protobufs http

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

The Riak key/value stack:

basho

protobufs httpvnode master

k/v vnode

storage engine

kv_sup

vnode_sup

k/v vnode

storage engine

k/v vnode

storage engine

It’s not only a “stack”, of course:

(this represents a part of the k/v section of the supervisor tree)

basho

client application

protobufs http

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

The Riak key/value stack:

basho

client application

protobufs http

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

client application

protobufs http

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

client application

protobufs http

riak_client

dynamo model FSMs

the nodes are connected with riak core using gossip, consistent hashing, etc

vnode master

k/v vnode

storage engine

basho

client application

protobufs http

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

let’s start at the top

more than one way to access
key/value data

interchangeable:
use them both

basho

protobufs http

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

HTTP is a great transfer protocol

get/put is representation transfer client application

•ubiquity
•flexibility
•interoperability

This is why we wrote webmachine!

basho

protobufs

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

protobufs are fast, simple, compact

throughput matters! client application

•{packet,4}

•{active,once}

•socket owner handles both
 TCP packets and
 internal response messages

http

basho

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

erlang native interface as general API

both the protobuf and HTTP entry
points use the same interface

client application

•parameterized module over
•coordinator node
•client instance id

•all access into Riak defined here

httpprotobufs

basho

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

direct inspiration: Amazon’s Dynamo

simple interface, complex semantics

client application

•gen_fsm helps a lot here
•interactions with N other nodes
•multiple phases of interaction
•version vector resolution

httpprotobufs

riak_client

basho

dynamo model FSMs

digression: testing tricky FSMs is tricky

QuickCheck to the rescue!

()

•property-based / model-based tests

•bugs may only appear with unexpected
 combinations of events

•shrinking these combinations helps find
 minimal failure cases

basho

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

direct inspiration: Amazon’s Dynamo

simple interface, complex semantics

client application

•gen_fsm helps a lot here
•interactions with N other nodes
•multiple phases of interaction
•version vector resolution

httpprotobufs

riak_client

basho

riak core

k/v vnode

storage engine

vnode master

Riak Core: fundamental distribution

FSMs run anywhere, use everything

client application

httpprotobufs

riak_client

dynamo model FSMs

arbitrary number of storage nodes
each contributing to the whole

basho

k/v vnode

storage engine

vnode masterone host, many virtual nodes

gen_server as a multiplexer

client application

httpprotobufs

riak_client

dynamo model FSMs

instantiate vnodes as needed

riak core

and well-known entry point

basho

k/v vnode

storage engine

node-local k/v storage abstraction

disposable, per-partition actor
for access to local data

client application

httpprotobufs

riak_client

dynamo model FSMs

riak core

vnode master

enable parallelism & fault-tolerance
the Erlang way (per-process)

basho

storage engineall storage systems look the same

like an Erlang “behaviour”
separating development of disk
or other storage from distribution

client application

httpprotobufs

riak_client

dynamo model FSMs

riak core

vnode master
steps forward w/o breaking code
(innostore, bitcask, ...)

k/v vnode

basho

storage enginefrom the bottom

it’s just a key/value store

client application

httpprotobufs

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

basho

from the top

it’s just a key/value store

client application

httpprotobufs

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

basho

it’s a distributed system at heart

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

client application

httpprotobufs

riak_client

riak core

basho

carefully managed complexity...

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

client application

httpprotobufs

riak_client

riak core

basho

allows simplicity at the edges

client application

httpprotobufs

riak_client

dynamo model FSMs

riak core

vnode master

k/v vnode

storage engine

basho

http://www.basho.com
follow twitter.com/basho/team

riak-users@lists.basho.com
#riak on Freenode

