
Testing ejabberd with 

QuickCheckQuickCheck

John Hughes, Ulf 

Norell

Chalmers 

University/Quviq

Jérôme Sautret

Process One



ejabberd

• Instant Messaging server

• XMPP-based

– Runs 38% of XMPP servers worldwide

But why is it 

interesting?

– Runs 38% of XMPP servers worldwide

• Forthcoming release is a major refactoring

– Testing is a priority!



XMPP Server

Register Alice Register Bob

Login Alice

Login Bob

Deliver  ”Hi”Deliver  ”Hi”

Login Bob

Send ”Hi” to Bob

Deliver  ”Hi”

Logout

Deliver  ”Hi”

Deadline



Asynchrony!

Makes testing hard!

—a common problem!

Three problems and their solutions

But we succeeded…



Our Approach using QuickCheck

Server
Random Trace of 

Server
Random

sequences of 

commands

Trace of 

observed

events

Commands

and message

deliveries



Trace Verification

• Examples:

– Is a message send followed by appropriate

receives within the right deadline?

– Are messages delivered uncorrupted?– Are messages delivered uncorrupted?

State

Logged in clients

Messages in flight

Time stamps

Is each trace event 

acceptable?

Transform state

appropriately.

Do we end in an acceptable state? (e.g. no messages in flight)



Tests were failing…

• But only longer tests—about 60 commands!

– Impossible to diagnose!

• Random tests are like failures from the field• Random tests are like failures from the field

– Lots of irrelevant stuff!

• First task: simplify the failing test…

– And QuickCheck does!



How Shrinking Works

Result of 

shrinking

Result of 

shrinking

Succeeds by chance



Problem #1

The same test may succeed

or fail in different runs!

A real pain when you’re trying to simplify a test case



Solution #1

Repetition!

• Should we consider a test to pass if it always

passes, or if it sometimes passes?

• ?ALWAYS(N,Property) or 
?SOMETIMES(N,Property)



?SOMETIMES(10,…)

• Search for test cases which fail repeatably…

• …yields failing tests of about 30 commands!

PROGRESS!



Problem #2

Shrinking leaves lots of 

commands

…and many seem to do very little

(e.g. update presence information)



Insight #2

Duff commands are 

needed to take timeneeded to take time

…because tests fail when timeouts are exceeded



Solution #2

Shrink commands to sleeps!

Any command � {call,timer,sleep,[choose(1,1000)]}

Shrinks to the shortest

sleep necessary to 

provoke failure



• Tests shrank to small counterexamples!

• Found several bugs in the trace verifier• Found several bugs in the trace verifier

– Didn’t recognise that unregister(Bob) also logs 

Bob out!

But tests still failed when

they were fixed!



Problem #3

Event time-stamps are 

recorded inaccurately.

The trace verifier must cope with this…

Sometimes even event order

is recorded inaccurately!



Problem #3’

The trace verifier

becomes horribly complex

• We don’t know the state

– We don’t know the event order!

– We must represent many possible states…

…exponentially

many



Solution #3

A new datatype of 

temporal relations, 

used to represent

Details in our paper at Automation of Software Test 2010.

used to represent

temporal information



Temporal Relations

• A temporal relation is a relation between 

times and values

0

1

Alternatively, a 

set of values at 

each time1

2

3

4

5

6

7

8

9

a

a

b

c

each time

Alternatively, 

values with a 

lifetime
c



Example

{login,alice,laptop}

{login,bob,desktop}

{login,bob,phone}

10

11

15

Events as a 

temporal 

relation

{logged_in,{login,bob,phone}

{send,alice,bob,”Hi”}

{delivery,alice,bob,desktop,”Hi”}

{logout,bob,phone}

15

26

31

33

{logged_in,

bob,

phone}

States as 

a 

temporal 

relation



Stateful Relations

• Enter a list of states on a matching event

LoggedIn = stateful(fun logging_in/1,

fun logging_out/2,

Events)

• Transform a state on a matching event

logging_in({login,Uid,ResourceId}) ->

[{logged_in,Uid,ResourceId}].

logging_out({logged_in,Uid,Rid},Ev) ->

case Ev of

{logout,Uid,Rid} -> [];

{unregister,Uid} -> []

end.



Relational Operations

• On matching events, 

MessageCreations =

map(fun message_creation/1,

product(Events,LoggedIn))

Apply this 

function…

…to every pair of an 
• On matching events, 

create a message-in-

flight

message_creation({{send,From,To,Msg},

{logged_in,To,Rid}}) ->

{message,From,To,Rid,Msg}.

…to every pair of an 

event and logged-in

user



Messages as a Temporal Relation

Messages = stateful(fun start_message/1,

fun stop_message/2,

union(MessageCreations,

Events))

start_message({message,From,To,R,Msg}) ->

[{message,From,To,R,Msg}].

stop_message({message,From,To,R,Msg},Ev) ->

case Ev of

{delivery,From,To,R,Msg} -> [];

{logout,To,R}            -> [];

{unregister,To}          -> []

end.



Temporal Operations

• all_past(N,R) contains x at time t

���� R contains x at t

and at the N previous times

R

all_past(N,R)

x

x

N



Message Delivery

• A relation containing messages overdue for 

delivery…

– In flight for the last 100 ms

Overdue = all_past(100,Messages)

– In flight for the last 100 ms

• In the test case, check

is_empty(Overdue)



Timing Uncertainty

• If a user logs in on a second resource just 

before a message is sent, it need not be 

delivered…login may not be complete

MustbeLoggedIn = all_past(15,LoggedIn),MustbeLoggedIn = all_past(15,LoggedIn),

MaybeLoggedOut = complement(MustbeLoggedIn),

MaybeLoggedIn = any_past(15,LoggedIn)

LoggedIn

MaybeLoggedIn

MustbeLoggedIn

MaybeLoggedOut

bob

bob

bob

bob bob



• Relational trace verifier is much more modular

and declarative than the state-machine one

– Messages may be delivered after a logout—for a 

short timeshort time

• State machine: 26 LOC at 4 separate locations

• Relational: MaybeLoggedIn

– Message delivery deadline

• 5 places in state-machine spec

• 1 place in relational spec

• And it works!



Bugs in ejabberd

• Send M to Bob & Bob logs in close together

– M should be delivered to Bob

– M only delivered on Bob’s next login– M only delivered on Bob’s next login

• Send M to Bob & Bob logs out close together

– M should be delivered to Bob now, or on next

login

– M may be lost altogether



Conclusions

• Automating testing of asynchronous systems 

is hard…

• …but doable, and the ideas in this talk can

help.help.

More information

• Paper on temporal relations at 

Automation of Software Test 2010

• Try QuickCheck Mini (free version, on 

your CD)


