
The Erlang Rationale

Robert Virding

09-04-28 The Erlang Rationale 2

A Rationale

Rationale – n. 1. Fundamental reasons; the basis.
2. An exposition of principles or reasons.

• Why would we want one?

• Help users understand how/why to use various
features

• Help language designers
• Help implementors
• Help people wishing to extend language

09-04-28 The Erlang Rationale 3

First principles

• High level language to get real benefits.
• Lightweight concurrency

– The system should be able to handle a large number of
processes, process creation, context switching and inter-process
communication must be cheap and fast.

• Asynchronous communication
• Process isolation

– We don’t want what is happening in one process to affect any
other process.

• Error handling
– The system must be able to detect and handle errors.

• Continuous evolution of the system
– We want to upgrade the system while it is running and with no

loss of service.

09-04-28 The Erlang Rationale 4

First principles

• The language should be simple
– Simple in the sense that there should be a small number of basic

principles, if these are right then the language will be powerful
but easy to comprehend and use. Small is good.

– The language should be simple to understand and program.

• We should provide tools for building systems not
solutions
– We would provide the basic operations needed for building

communication protocols and error handling.

09-04-28 The Erlang Rationale 5

Trivial code example
ringing_a_side(Addr, B_Pid, B_Addr) ->
 receive
 on_hook ->
 B_Pid ! cleared,
 tele_os:stop_tone(Addr),
 idle(Addr);
 answered ->
 tele_os:stop_tone(Addr),
 tele_os:connect(Addr, B_Addr),
 speech(Addr, B_Pid, B_Addr);
 {seize,Pid} ->
 Pid ! rejected,
 ringing_a_side(Addr, B_Pid, B_Addr);
 _ ->
 ringing_a_side(Addr, B_Pid, B_Addr)
 end.

09-04-28 The Erlang Rationale 6

Trivial code example
ringing_b_side(Addr, A_Pid) ->
 receive
 cleared ->
 tele_os:stop_ring(Addr),
 idle(Addr);
 off_hook ->
 tele_os:stop_ring(Addr),
 A_Pid ! answered,
 speech(Addr, A_Pid, not_used);
 {seize,Pid} ->
 Pid ! rejected,
 ringing_b_side(Addr, A_Pid);
 _ ->
 ringing_b_side(Addr, A_Pid)
 end.

09-04-28 The Erlang Rationale 7

Things missing in early
Erlang

• Code handling

• Funs

• ETS
• Binaries

• OTP

09-04-28 The Erlang Rationale 8

Erlang ”things”

• Only two basic types of things in Erlang

• Immutable data structures
– Normal Erlang terms

• Processes
– Everything with internal state

• Yes, the process dictionary is a mutable
data structure, but we never really liked it!

09-04-28 The Erlang Rationale 9

Processes

• A process is something which obeys
process semantics:
– Communicates through asynchronous

message passing
– Links/monitors for error detection/handling
– Obey/transmit exit signals
– Parallel independent execution

• N.B. Implementation and internal details
irrelevant!

09-04-28 The Erlang Rationale 10

Process communication

• All process communication by messages

• All process communication asynchronous

• Process BIFs asynchronous
– Only check arguments
– One exception then: sending to registered

name!

• Works the same with distribution!

09-04-28 The Erlang Rationale 11

Ports

• ”Processes” for communicating with the outside
world

• Obey process semantics
– Message based interface
– Obeys links and exit signals
– Fits in with rest of erlang

• Ports processes on the outside which talk to
hardware

• We viewed hardware as being ”active”
• Ports need connected process to communicate

with.

09-04-28 The Erlang Rationale 12

Errors and error handling

• Added as ”easy” way to build robust systems
• Allow critical robust core to handle unsafe user

code
• Follows process oriented system design

• Co-exists with rest of concurrency, very
asynchronous

• Simple bi-directional state version fine for
original systems but not sufficient

• Provide the tools not the solution

09-04-28 The Erlang Rationale 13

Modules and code

• Erlang system always been compiled since
leaving Prolog

• Erlang modules very basic, only have a name
and exported functions

• All functions belong to module
• Module basis for code handling and compilation,

easier that way
• Multiple versions needed to do controlled

upgrading
• Why 2 versions? Why not? And more explicit

versions becomes difficult to handle

09-04-28 The Erlang Rationale 14

I/O-system and servers

• i/o-server between app and i/o-device/port
• Must be a process so all processes in app

can use it
• Handles mapping i/o-requests from apps

to ports
• Allows generic i/o-functions as i/o-server

handles device specifics
• Means i/o-server is generic as i/o-

functions handle specific requests

09-04-28 The Erlang Rationale 15

Process groups

• Erlang like an OS
Should be possible to run many apps at

same time
• Processes in an app would need specific

”system” information
Created process groups

Each group has a group leader
A group is all processes with the same
leader

09-04-28 The Erlang Rationale 16

Jobs and the JCL

• One problem with running many apps is
that i/o can become very jumbled

Solution was to add concept of a ”job” and
a user driver.

User driver controls which job
communicates with user.

09-04-28 The Erlang Rationale 17

Jobs and the JCL

Job 2

Job 1

Process group

User
driver

Group
leader

Process group
Group
leader”user

”
...

09-04-28 The Erlang Rationale 18

Pattern-matching and
guards

• Pattern matching is a Big Win

• The pattern to match and pull apart data
should look the same as pattern to build it

• Guards are tests providing simple
extension to pattern matching

• Guard tests are not expressions!

• Allowing full boolean expressions is both
good and bad

09-04-28 The Erlang Rationale 19

Variables, scoping and =

• Variables are just bind-once references to
values

• Also inherited Prologs scoping, or rather lack of
scoping, a variable’s scope is the whole function
clause

• Affects pattern matching as already occurring
variables means testing existing value

• = started its life as simple assignment
• Practical to use it to pull apart return values

09-04-28 The Erlang Rationale 20

Records

• Records added to solve problem of:
– Named fields in tuples
– Same efficency as element/setelement

• We decided to use tuples instead of adding new
data type.

Compile-time feature
Lack of explicit typing means record type must
always be included
Setting field is not compatible with =

X#person.name = ”Robert”
can never mean what people would like

09-04-28 The Erlang Rationale 21

Macros

• Originally added to provide named
constants

• Arguments and conditional compilation
added

• Having them token based allows you to do
wonderful and terrible things.

• I still wish that I had done them more lisp-
like instead of C-like. (but this is a real
pain with complex syntax!)

09-04-28 The Erlang Rationale 22

if

• Originally there was only function matching
• Then case was added, very practical but a bit naughty.
• However sometimes got cases like this:

case 1 of
 _ when ... -> ... ;
 _ when ... -> ...
end

Added if as quick fix, easy to do as only used guards.
Not used much so we never realized the trouble it would
cause.

09-04-28 The Erlang Rationale 23

Characters and strings

• Inherited integers and lists from Prolog

• I like using lists for strings
– powerful data structure

– easy to work with

• A char type probably not wrong

09-04-28 The Erlang Rationale 24

Never-ending discussions

• Modules as objects?

• Always generate exceptions for errors?

• Add variable scoping and let?
• Do somethin about if. Add cond?

	The Erlang Rationale
	A Rationale
	First principles
	Slide 4
	Trivial code example
	Slide 6
	Things missing in early Erlang
	Erlang ”things”
	Processes
	Process communication
	Ports
	Errors and error handling
	Modules and code
	I/O-system and servers
	Process groups
	Jobs and the JCL
	Slide 17
	Pattern-matching and guards
	Variables, scoping and =
	Records
	Macros
	if
	Characters and strings
	Never-ending discussions

