
Introduction
Case study

Methodology
Conclusions

Improving software development using
Erlang/OTP
a case study

Laura M. Castro Souto

MADS Group � Universidade da Coruña

June 10th, 2010

Laura M. Castro Improving sw. development with Erlang/OTP � 1 of 46

Introduction
Case study

Methodology
Conclusions

Outline

1 Introduction

2 Case study

3 Functional software development methodology
From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

4 Conclusions

Laura M. Castro Improving sw. development with Erlang/OTP � 2 of 46

Introduction
Case study

Methodology
Conclusions

1 Introduction

2 Case study

3 Functional software development methodology
From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

4 Conclusions

Laura M. Castro Improving sw. development with Erlang/OTP � 3 of 46

Introduction
Case study

Methodology
Conclusions

The questions

How can we build better software. . .

when the domain is extremely complex?

when a lot of expert knowledge is required?

when we want robust, distributed, fault-tolerant systems?

when we look for versatile, �exible, adaptable applications?

. . . using functional technology?

Laura M. Castro Improving sw. development with Erlang/OTP � 4 of 46

Introduction
Case study

Methodology
Conclusions

The questions

How can we build better software. . .

when the domain is extremely complex?

when a lot of expert knowledge is required?

when we want robust, distributed, fault-tolerant systems?

when we look for versatile, �exible, adaptable applications?

. . . using functional technology?

Laura M. Castro Improving sw. development with Erlang/OTP � 4 of 46

Introduction
Case study

Methodology
Conclusions

Our answer

A declarative paradigm-based software development methodology

can achieve signi�cant improvement by means of quality

assurance methods

A declarative approximation is:

more suitable to address and solve real-world problems

compatible with traditional analysis and design techniques

powerful to improve product quality

Laura M. Castro Improving sw. development with Erlang/OTP � 5 of 46

Introduction
Case study

Methodology
Conclusions

1 Introduction

2 Case study

3 Functional software development methodology
From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

4 Conclusions

Laura M. Castro Improving sw. development with Erlang/OTP � 6 of 46

Introduction
Case study

Methodology
Conclusions

Case study

Advanced Risk Management Information System:

Tracking Insurances, Claims, and Exposures

A complex management application for a prominent �eld

At the time (2002), no alternatives from clients' perspective

Today, still no comparable product in the market

Speci�c and risky, client company did not have a R & D

Agreement with research group at local University

Laura M. Castro Improving sw. development with Erlang/OTP � 7 of 46

Introduction
Case study

Methodology
Conclusions

Project requirements

Modelling and management of organisation resources

Modelling and management of potential risks

Modelling and management of contracted insurance policies

Including modelling and management of policy clauses

Management of claims for accidents

Selection of the most suitable warranty

(help decision support system)

Laura M. Castro Improving sw. development with Erlang/OTP � 8 of 46

Introduction
Case study

Methodology
Conclusions

Project information

Client-server architecture

Multiplatform lightweight Java client

Server completely developed using Erlang/OTP

Started in 2002, �rst on-site deployment in 2005

Under maintenance since 2008

Development took around 200 person-months

Up to �ve developers (three of them full-time)

Maintenance nowadays takes around 500 person-hours/year

Total code size (server + client) ∼ (83000+ 66000) LOC

Laura M. Castro Improving sw. development with Erlang/OTP � 9 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

1 Introduction

2 Case study

3 Functional software development methodology
From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

4 Conclusions

Laura M. Castro Improving sw. development with Erlang/OTP � 10 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

From requirements to analysis and design

Requirements elicitation:

�Risk situations have a number of speci�c properties, which may

vary with time.�

Implication of experts is essential

Structured and unstructured interviews provide good results

Multidisciplinary teams are more productive

Laura M. Castro Improving sw. development with Erlang/OTP � 11 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

From requirements to analysis and design

O.O. analysis and standard UML favour communication

Design patterns help to avoid known pitfalls

REAL DATA

Model formalisation as declarative statements

Provides early validation

Close to functional implementation, re-usable for testing

Valuable for traceability

Laura M. Castro Improving sw. development with Erlang/OTP � 12 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

From requirements to analysis and design

O.O. analysis and standard UML favour communication

Design patterns help to avoid known pitfalls

Model formalisation as declarative statements

Provides early validation

Close to functional implementation, re-usable for testing

Valuable for traceability

Laura M. Castro Improving sw. development with Erlang/OTP � 12 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Implementation of a paradigm shift

Functionality implementation:

�Determination of policy relevance in the event of an accident.�

1 No con�ict between object-oriented analysis and design,

and implementation approach

2 High-level algorithm description eases the implementation

task, improving e�ciency

Laura M. Castro Improving sw. development with Erlang/OTP � 13 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Object orientation vs. declarative paradigm

The object-oriented perspective:

is closer to the way we perceive real entities

does not perform well when describing behavioural details

grants stability of actors and interfaces

The declarative perspective:

is closer to the way we specify tasks and activities

does not work comfortably at the big scale of things

provides expressive ways of implementing algorithms

Laura M. Castro Improving sw. development with Erlang/OTP � 14 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Objects in Erlang/OTP

Objects as data structures

for short life, coarse concurrency

business objects (risk objects, risk groups, risks, policies,

accidents,. . .), data types, etc.

Objects as processes

for long life, �ne-grain concurrency

data storage connection pool, user session manager, task

server, �le logger, con�guration server, etc.

X simple

X immutable

X coarse grain concurrency

X low resource usage

X secure encapsulation

X `mutable'

X �ne grain concurrency

X more resource consuming

Both are conveniently used in our study case ARMISTICE.

Laura M. Castro Improving sw. development with Erlang/OTP � 15 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Objects in Erlang/OTP

Objects as data structures

for short life, coarse concurrency

business objects (risk objects, risk groups, risks, policies,

accidents,. . .), data types, etc.

Objects as processes

for long life, �ne-grain concurrency

data storage connection pool, user session manager, task

server, �le logger, con�guration server, etc.

X simple

X immutable

X coarse grain concurrency

X low resource usage

X secure encapsulation

X `mutable'

X �ne grain concurrency

X more resource consuming

Both are conveniently used in our study case ARMISTICE.

Laura M. Castro Improving sw. development with Erlang/OTP � 15 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Objects in Erlang/OTP

Objects as data structures

for short life, coarse concurrency

business objects (risk objects, risk groups, risks, policies,

accidents,. . .), data types, etc.

Objects as processes

for long life, �ne-grain concurrency

data storage connection pool, user session manager, task

server, �le logger, con�guration server, etc.

X simple

X immutable

X coarse grain concurrency

X low resource usage

X secure encapsulation

X `mutable'

X �ne grain concurrency

X more resource consuming

Both are conveniently used in our study case ARMISTICE.

Laura M. Castro Improving sw. development with Erlang/OTP � 15 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Objects in Erlang/OTP

Objects as data structures for short life, coarse concurrency

business objects (risk objects, risk groups, risks, policies,

accidents,. . .), data types, etc.

Objects as processes for long life, �ne-grain concurrency

data storage connection pool, user session manager, task

server, �le logger, con�guration server, etc.

X simple

X immutable

X coarse grain concurrency

X low resource usage

X secure encapsulation

X `mutable'

X �ne grain concurrency

X more resource consuming

Both are conveniently used in our study case ARMISTICE.

Laura M. Castro Improving sw. development with Erlang/OTP � 15 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Implementation of real-world behaviour

�Determination of policy relevance in the event of an accident.�

In Erlang syntax:

Restriction = {hazard, Hazard}
| {formula, {Name, Value}}
| {string, Nuance}
| {all, [Restriction]}
| {any, [Restriction]} | ...

Laura M. Castro Improving sw. development with Erlang/OTP � 16 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Implementation of real-world behaviour

relevant_policy(Hazard, PolicyClauses) ->
[Clause || Clause <- PolicyClauses,

relevant(Hazard, Clause) =/= false].

relevant(H, {hazard, H}) -> true;
relevant(H, {hazard, NH}) -> false;
relevant(H, {string, Nuance}) -> Nuance;
relevant(H, {all, Clauses}) ->

lists:foldl(fun(A, B) -> and(A, B) end, true,
[relevant(H, C) || C <- Clauses]);

relevant(H, {any, Clauses}) ->
lists:foldl(fun(A, B) -> or(A, B) end, false,

[relevant(H, C) || C <- Clauses]);
...

Laura M. Castro Improving sw. development with Erlang/OTP � 17 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Ensuring functionality and quality through testing

Testing

�There is a problem with ARMISTICE. . . �

Three types of testing scenarios (in theory):

1 Conformance of components to speci�cation (unit testing)

2 Appropriate interaction of components (integration testing)

3 System behaviour in accordance with requirements (validation)

Laura M. Castro Improving sw. development with Erlang/OTP � 18 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Ensuring functionality and quality through testing

Testing

�There is a problem with ARMISTICE. . . �

Three types of testing scenarios (in the real world):

1 By-hand developer ad-hoc tests on own code

2 By-hand developer functionality testing

3 On-site user validation

Laura M. Castro Improving sw. development with Erlang/OTP � 18 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Unit testing

�Does the decimal custom data type conform to its speci�cation? �

Sometimes a custom implementation of a data type is in place

(i.e., ARMISTICE currency data type)

Requirement: support for multiple currencies, exchange rates

Requirement: 16 decimal digits precision

Technical requirement: uniform marshalling/unmarshalling

Laura M. Castro Improving sw. development with Erlang/OTP � 19 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

new

tuple-valuesingle-value

decimal-partinteger-part

int float string int string nat string

Initial strategy:

Use an automatic testing tool

to generate random decimal

values: QuickCheck

decimal() ->
?LET(Tuple, {int(), nat()}, decimal:new(Tuple)).

Laura M. Castro Improving sw. development with Erlang/OTP � 20 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

prop_sum_comm() ->
?FORALL({D1, D2}, {decimal(), decimal()},

decimal:sum(D1, D2) == decimal:sum(D2, D1)).

Thousands of randomly generated test cases will pass for this

kind of properties

but. . .

which other properties do we add?

when do we have su�ciently many of them?

Laura M. Castro Improving sw. development with Erlang/OTP � 21 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

prop_sum_comm() ->
?FORALL({D1, D2}, {decimal(), decimal()},

decimal:sum(D1, D2) == decimal:sum(D2, D1)).

Thousands of randomly generated test cases will pass for this

kind of properties but. . .

which other properties do we add?

when do we have su�ciently many of them?

Laura M. Castro Improving sw. development with Erlang/OTP � 21 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

De�ne a model for the data type:

[sum(di , dj)] ≡ [di]+ [dj]
[subs(di , dj)] ≡ [di]− [dj]
[mult(di , dj)] ≡ [di] ∗ [dj]
[divs(di , dj)] ≡ [di] / [dj]

. . .

decimal_model(Decimal) -> decimal:get_value(Decimal).

Erlang/C �oating point implementation (IEEE 754-1985 standard)

Laura M. Castro Improving sw. development with Erlang/OTP � 22 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

prop_sum() ->
?FORALL({D1, D2}, {decimal(), decimal()},

decimal_model(decimal:sum(D1, D2)) ==
decimal_model(D1) + decimal_model(D2)).

Problem: errors show internal representation

> eqc:quickcheck(decimal_eqc:prop_sum()).
....Failed! After 5 tests.
{{decimal,1000000000000000}, {decimal,11000000000000000}}
false

Laura M. Castro Improving sw. development with Erlang/OTP � 23 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

prop_sum() ->
?FORALL({D1, D2}, {decimal(), decimal()},

decimal_model(decimal:sum(D1, D2)) ==
decimal_model(D1) + decimal_model(D2)).

Problem: errors show internal representation

> eqc:quickcheck(decimal_eqc:prop_sum()).
....Failed! After 5 tests.
{{decimal,1000000000000000}, {decimal,11000000000000000}}
false

Laura M. Castro Improving sw. development with Erlang/OTP � 23 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Use symbolic data structures in test generation:

decimal() ->
?LET(Tuple, {int(),nat()}, {call,decimal,new,[Tuple]}).

prop_sum() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
decimal_model(decimal:sum(D1, D2)) ==

decimal_model(D1) + decimal_model(D2)
end).

Laura M. Castro Improving sw. development with Erlang/OTP � 24 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Errors reported with symbolic values are easier to understand:

> eqc:quickcheck(decimal_eqc:prop_sum()).
........Failed! After 9 tests.
{{call,decimal,new,[2,1]}, {call,decimal,new,[2,2]}}
Shrinking..(2 times)
{{call,decimal,new,[0,1]}, {call,decimal,new,[0,2]}}
false

0.1+ 0.2 6= 0.3 ?

Indeed, due to unavoidable IEEE 754-1985 rounding problem.

Laura M. Castro Improving sw. development with Erlang/OTP � 25 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Adjust the model:

a ≈ b ⇔

{
|a| − |b| < εabs
x − y

x
< εrel , x = max(|a|, |b|), y = min(|a|, |b|)

εabs = 10−16, εrel = 10−10

prop_sum() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
equivalent(decimal_model(decimal:sum(D1, D2)),

decimal_model(D1) + decimal_model(D2))
end).

Laura M. Castro Improving sw. development with Erlang/OTP � 26 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Beware we may feel satis�ed with this unit testing but:

It is not exhaustive

We have not tested all possibilities for decimal:new/1

It is not complete

We have not tested operations

combination
new

decimal

sum mult

...

tuple-value

decimal-partinteger-part

int float string int string nat string

single-value

Laura M. Castro Improving sw. development with Erlang/OTP � 27 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Introduce recursive generators including `generator' operations:

decimal() ->
?SIZED(Size, decimal(Size)).

decimal(0) ->
{call,decimal,new,[oneof([int(), real(), dec_string(),

{oneof([int(), list(digit())]),
oneof([nat(), list(digit())])}
])]};

decimal(Size) ->
Smaller = decimal(Size div 2),
oneof([decimal(0),

{call, decimal, sum, [Smaller,Smaller]},
{call, decimal, mult,[Smaller,Smaller]}, ...]).

Laura M. Castro Improving sw. development with Erlang/OTP � 28 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Shrinking customisation can improve counterexample quality:

decimal(Size) ->
Smaller = decimal(Size div 2),
oneof([decimal(0),

?LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, sum, [D1, D2]}),

?LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, mult, [D1, D2]}), ...]).

Laura M. Castro Improving sw. development with Erlang/OTP � 29 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Error scenarios (negative testing) must be checked at properties:

prop_divs() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
case equivalent(decimal_model(D2), 0.0) of

true ->
{’EXIT’,_} = catch (decimal_model(D1)/

decimal_model(D2)),
{error, _} = decimal:divs(D1, D2);

false ->
equivalent(decimal_model(decimal:divs(D1, D2)),

decimal_model(D1)/decimal_model(D2))
end

end).

Laura M. Castro Improving sw. development with Erlang/OTP � 30 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Generator must be well-de�ned, with additional base case test:

defined(E) ->
case catch eval(E) of

{’EXIT’, _} -> false
_Value -> true;

end.

well_defined(G) ->
?SUCHTHAT(E, G, defined(E)).

decimal() ->
?SIZED(Size, well_defined(decimal(Size))).

prop_new() ->
?FORALL(SD,decimal(0),is_float(decimal_model(eval(SD)))).

Laura M. Castro Improving sw. development with Erlang/OTP � 31 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Unit testing of data types using properties

Methodology to guarantee full testing:

1 De�nition of a suitable model for the data type

2 Generation of well-de�ned, symbolic values

including all productive operations

3 De�nition of one property for each operation

considering expected failing cases

4 Fine-tuning of shrinking preferences

Laura M. Castro Improving sw. development with Erlang/OTP � 32 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

State machine-based integration testing

Integration testing

�Do the appropriate components interact as expected when

creating a new risk group? �

Software is usually structured in di�erent components

Must be tested on their own to ensure they perform correctly,

in combination to ensure they interact properly

Components treated as working black boxes

Laura M. Castro Improving sw. development with Erlang/OTP � 33 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

initial_state

Load information about the system:

user sessions, risk groups identi�ers,

risk objects identi�ers, etc.

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

initial_state

-record(state, {user_sessions,
groups,
objects}).

initial_state()->
#state{user_sessions = [],

groups = [],
objects = []}.

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

command

Pick one of possible service

invocations

Use frequency to specify

probabilities

Introduce `anomalies' (i.e., delays)

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

command

command(S) ->
frequency(
...
[{7,{call, risk_group_facade,

new_risk_group,
[oneof(S#state.user_sessions),
group_name()]}}

|| S#state.user_sessions =/= []],
...

).

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

precondition

Check whether current status allows

invocation of chosen service:

no previous conditions required to

create a new risk group

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

precondition

precondition(S,
{call,risk_group_facade,
new_risk_group,

[SessionID, Name]})->
true;

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

next_state

Service invocation execution may

a�ect the test state:

a new risk group identi�er is added

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

next_state

next_state(S, Value,
{call,risk_group_facade,
new_risk_group,
Arguments}) ->

S#state{groups =
[Value | S#state.groups]};

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

postcondition

Check properties the system must

hold after service execution:

no previous conditions required to

create a new risk group

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

postcondition

postcondition(S,
{call,risk_group_facade,
new_risk_group,
Arguments}, Result)->

true;

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

Failure

QuickCheck shrinks the failing test

case to the shortest sequence of

commands which invocation leads to

the same error

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine testing

Success

Proceed to next test case, or

Exit reporting test pass

Laura M. Castro Improving sw. development with Erlang/OTP � 34 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine-based integration testing

Integration test success:

veri�cation of expected function calls
(dummy component)

Laura M. Castro Improving sw. development with Erlang/OTP � 35 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine-based integration testing

Integration test success: veri�cation of expected function calls
(dummy component)

Reduced e�ort

Collateral e�ects

avoidance

Early-stage problems

detection

Laura M. Castro Improving sw. development with Erlang/OTP � 35 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine-based integration testing

Original source code:

new_risk_group(SessionID, GroupName, GroupDescription)->
{ok, GroupData} =

risk_group_dao:new_skeleton(SessionID),
[{oid,GroupID}, {code,GroupCode},
{name,DefName},{desc,EmptyDescription}] = GroupData,

ok = risk_group_dao:update(SessionID, GroupID,
GroupName,
GroupDescription),

ok = risk_group_dao:unlock(SessionID, GroupID),
{ok, [{oid, GroupID}, {code, GroupCode},

{name, GroupName}, {desc, GroupDescription}]}.

Laura M. Castro Improving sw. development with Erlang/OTP � 36 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine-based integration testing

Dummy component source code:

new_risk_group(SessionID, GroupName, GroupDescription)->
GroupData = [{oid,group_id()}, {code,group_code()},

{name,GroupName}, {desc,GroupDescription}],
op_logger:add({risk_group_dao, new_skeleton,

[SessionID], {ok, GroupData}}),
op_logger:add({risk_group_dao, update,

[SessionID, GroupID, GroupCode,
GroupName, GroupDescription], ok}),

op_logger:add({risk_group_dao, unlock,
[SessionID, GroupID], ok}),

{ok, GroupData}.

Laura M. Castro Improving sw. development with Erlang/OTP � 36 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine-based integration testing

Testing state machine postcondition and property:

postcondition(S, {call,risk_group_facade,
new_risk_group,Arguments}, Result)->

Operations = op_logger:get({new_risk_group}),
check(new_risk_group, {S,Arguments,Operations,Result});

prop_integration() ->
?FORALL(Commands, commands(?MODULE),

begin
{History,S,Result} = run_commands(?MODULE,Commands),
Result == ok

end).

Laura M. Castro Improving sw. development with Erlang/OTP � 37 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

QuickCheck state machine-based integration testing

Methodology to fully test component integration:

Internal state stores minimal information for test

generation

Transitions are operations to be tested

Interactions are performed against dummy objects

Preconditions are true, postconditions check correct

sequence of interactions

Laura M. Castro Improving sw. development with Erlang/OTP � 38 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Validation

�Does the system enforce that there is only one policy renewal

under construction at a time? �

Complex, data-intensive software usually handles great

number of business objects with complex relationships

Few basic data consistency constraints are enforced by

storage media (i.e., DBMS)

Too complex, change dynamically, non-trivial calculations,. . .

Laura M. Castro Improving sw. development with Erlang/OTP � 39 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Ensure that business rules are respected at all times:

RDBMS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

Sequences of interface calls

could violate them

Unit testing is not enough

Laura M. Castro Improving sw. development with Erlang/OTP � 40 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Ensure that business rules are respected at all times:

RDBMS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

acc
ess

 p
oint

tru
ste

d

Sequences of interface calls

could violate them

Unit testing is not enough

Laura M. Castro Improving sw. development with Erlang/OTP � 40 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Ensure that business rules are respected at all times:

RDBMS

APPLICATION BUSINESS LOGIC

QUICKCHECK

Sequences of interface calls

could violate them

Unit testing is not enough

Laura M. Castro Improving sw. development with Erlang/OTP � 40 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Use QuickCheck state machine model:

initial_state minimum to generate related test cases

commands interface functions to be tested

precondition true

next_state test internal state update

postcondition true

Laura M. Castro Improving sw. development with Erlang/OTP � 41 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Business rules compliance check:

specify BR as SQL sentence

de�ne an invariant function to evaluate BR

business_rule(Connection) ->
RenConsCount =
db_interface:process_query(Connection,
"SELECT COUNT(*) "
" FROM renewal "
" WHERE ren_constr IS TRUE "
" AND ren_policy IN (SELECT pol_number "

" FROM policy) "
" GROUP BY ren_policy "),

([] == [R || R <- RenConsCount, R > 1]).

Laura M. Castro Improving sw. development with Erlang/OTP � 42 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

invariant() ->
{ok, Connection} = db_interface:start_transaction(),
Result = business_rule(Connection),
...
db_interface:rollback_transaction(Connection),
Result.

prop_business_logic() ->
?FORALL(Commands, commands(?MODULE),

begin
true = invariant(),
{History,S,Result} = run_commands(?MODULE,Commands),
PostCondition = invariant(),
clean_up(S),
PostCondition and (Result == ok)

end).

Laura M. Castro Improving sw. development with Erlang/OTP � 43 of 46

Introduction
Case study

Methodology
Conclusions

From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

Data integrity validation via business rules testing

Methodology to test business rules:

Minimal internal state to conduct related operations

Transitions are public interface exported functions

Preconditions and postconditions are true

Business rules (formulated as SQL sentences) are tested as

invariants after test execution

Laura M. Castro Improving sw. development with Erlang/OTP � 44 of 46

Introduction
Case study

Methodology
Conclusions

1 Introduction

2 Case study

3 Functional software development methodology
From requirements to analysis and design
Implementation of a paradigm shift
Ensuring functionality and quality through testing

4 Conclusions

Laura M. Castro Improving sw. development with Erlang/OTP � 45 of 46

Introduction
Case study

Methodology
Conclusions

Conclusions

Functional programming represents a serious alternative for

developing real-world software:

A high-level abstraction tool, close to concepts and

requirements

Very expressive and e�ective way of implementing

complex algorithms

A context disposed to powerful testing techniques

Laura M. Castro Improving sw. development with Erlang/OTP � 46 of 46

	Introduction
	Case study
	Functional software development methodology
	From requirements to analysis and design
	Implementation of a paradigm shift
	Ensuring functionality and quality through testing

	Conclusions

