Efene Programming Language

Mariano Guerra - Erlang Factory - London 2010



\Y[<












Java, Python



PHP, JS, C#






| Python & JS









Disclaimer



PHII NN
xSl e e,
: N Nl







New technologies aren't adopted
because they are great, new, and
disruptive; they are adopted only If
the user's crisis solved by the
technology Is greater than the
perceived pain of adoption



CrisiIs



Vianycore



Pain of adoption



A lot of people complain about the
Erlang’s syntax when they first start
using It -- . It Is
complicated and seemingly
convoluted, but the more you write
it the more natural it becomes. It
for any of It

Chris Williams



Visual Basic

Learning curve
for some
programming
languages




Notepad

Classical learning

curves for some
common editors

."...

_.-'".

] dl." L
o lll
Pt

P |

Visual Studio

hitp:/funix.rulez.org/~calver/pictures/curves.jpa









|avaScript
Pythaon

C#

SOL

Pert|

Ruby

Shell

Visual Basic
Actionscript
Assembly
Delphi
Objective CF
Lisp

Pascal

Lua
Fortran|
ColdFusion
Scheme
Haskell [

Tl

Adal]

Cobaol

»]
Erlang
Scala
Smalltalk|]
CCamil

Farth

Rexx

hitp:/langpop.com




Position | Position Ratings Delta
‘ uay 2010 ‘ Iula]r 2000 ‘ Delta in Position ‘ Programming Language ‘ May 2010 ‘ May 2009 ‘ Status

lh 186% +2 1]53-‘11

‘ | (Visual) Basic ‘ ’7

| | | Lﬂ | 4.779% | +0.51% ’7
| | | F*ﬂh n | 4.097% | -1.45% ’T
| I F'Hrl | 3.286% | 0.24% ’T

| | | 11 lephl | 2 566% | +0.24% ’T
| | IIIIIIIIII Objective-C | 2 ’7
| | | FEuI:U. | 2.094% | -0.60% ’7
| | | l.ll.l. 1a-.ra_n ript | 2.084% | -1.46% ’T
| 13 | 12 | | PLJSQL | 0.859% | 0.24% ’T
| 14 | 13 | | 5&5 0.732% | -0.07% ’T
| 15 | 14 | | F'ascal 0.728% | -0.05% ’7
| 16 | 22 | II‘IIII Lisp/Scheme/Clojure | 0.651% | +0.19% ’T
| 17 | | ABAF’ | 0.650% | -0.02% ’T
| | IIIIIIIIIILH | 0.640% | +0.64% ’T
MHTLHE | 0.612% | +0.09% ’T

hitp:/fmww tiobe.com/index.php/content/paperinfo/tpcifindex.htmik



. ++, #, Java, JavaScript



JavaScript was designed with
Java's syntax and standard library
In mind



All Java keywords are reserved In
JavaScript



JavaScript's standard  library
follows Java's naming conventions



JavaScript's Math and Date objects
are based on classes from Java
1.0



C - C++ - CH



Basic — Visual Basic -
Visual Basic.NET






A language with friendly syntax for
people coming from mainstream
languages



Codel



# when statement
compare when = fn (A, B) {
when A < B {
1t
}
else when A > B {
gt
}

else {
€q
}



% when statement
compare when(A, B) ->
if
A<B ->
1t;
A>B ->
gt;
true ->
€q
end.



# when statement
compare when = fn (A, B)
when A < B
1t

else when A > B
gt

else
€q



fene?



| Python & JS



# 1f statement
compare if = fn (A, B) {
if A < B {
1t
}
else 1f A > B {
gt
}

else {
€q
}



# 1f statement
compare if = fn (A, B)
if A < B
1t

else 1f A > B
gt

else
€q



% 1T statement
compare 1if(A, B) ->
case A < B of
true ->
1t;
false ->
case A > B of
true ->
gt;
false ->
€q
end
end.



# switch statement and multiline expressions
compare to string = fn (Result) {
switch Result {
case Lt {
"lower than"

}
case gt {
"greater than"
}
case eq {
"equal to"
}
else {
"invalid value '" ++
atom to list(Result) ++
}



# switch statement and multiline expressions
compare to string = fn (Result)
switch Result
case Lt
"lower than"

case gt
"greater than"

case eq
"equal to"

else
"invalid value '" ++
atom to list(Result) ++



% switch statement and multiline expressions
compare to string(Result) ->
case Result of
t ->
"lower than";

gt ->
"greater than";

eq ->
"equal to";

->

"invalid value -
atom to list(Result) ++

end.



# try/catch expression and tuples
fail = fn (Fun) {

try {
Fun()
}

catch error Error {
("error", Error)
}
catch throw Throw {
("throw", Throw)
}
catch Type Desc {
(atom to list(Type), Desc)
}



# try/catch expression and tuples
fail = fn (Fun)
try
Fun()

catch error Error
("error", Error)

catch throw Throw
("throw", Throw)

catch Type Desc
(atom to list(Type), Desc)



% try/catch expression and tuples
fail(Fun) ->
try
Fun()
catch
error:Error ->
("error", Error);

throw:Throw ->
("throw", Throw):

Type:Desc ->
(atom to list(Type), Desc)
end.



# multiple function definition and gquards
compare to string quards = fn (Result) when Result == 1t {
"lower than”
}
fn (Result) when Result == gt {
"greater than"

}

fn (Result) when Result == eq {
"equal to"

}

fn (Result) {
"invalid value + -
atom to list(Result) ++



# multiple function definition and gquards

compare to string quards = fn (Result) when Result == 1t
"lower than”

fn (Result) when Result == gt
"greater than"

fn (Result) when Result == eq
"equal to"

fn (Result)
"invalid value '" ++
atom to list(Result) ++



% multiple function definition and gquards
compare to string guards(Result) when Result == 1t ->
"lower than":

compare to string guards(Result) when Result == gt ->
"greater than";

compare to string guards (Result) when Result == eq ->
"equal to";

compare to string guards(Result) ->
"invalid value "" ++
atom to list(Result) ++



Extra



@public
run = fn ()
RO = for X in lists.seq( , )
A =X+
A
Rl = for X in lists.seq( |, ) if X % . ==
A=X+
A

R2 = for X in lists.seq( , )
for Y in lists.seq( , )
(X, Y)

R2A = [(X, Y) for X in lists.seq( ', ) for Y in lists.seq( , )]

R3 = for (X, Y) in lists.zip(lists.seq( , ), lists.seq( , ))
(Y, X)



person = object(firstname, lastname, mail)

@public

run = fn ()
# helper function
Print = fn (X) { io.format("~p~n", [X]) }
# create an "object"
P = person("mariano", "guerra", "mail")
# get firstname
Print(P(get, firstname))
# get lastname
Print(P(oet, lastname))
# get the "object" as an erlang record
Print(P(to, rec))
# get the fields of the "object"
Print(P(to, fields))
# get the name of the "object”
Print(P(to, name))

# check 1f the "object" has an attr called firstname
Print(P(has, firstname))

# check 1f the "object" has an attr called address
Print(P(has, address))

# create a new "object" changing the firstname attribute
Pl = P(setfirstname, "Mariano")

# build a new person from the record of another one

P2 = person(P1l(to, rec))

R = P2(to, rec)

Print(person.R[firstname])



ldeas behind efene



>>> import this
The Zen of Python, by Tim Peters
Explicit is better than implicit.

Complex is better than complicated.

Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.
Although never is often better than right now.

Namespaces are one honking great idea -- let's do more of those!



DRY



-module(name) .
-export([foo/1]).

lot of code here ...

o

case 1: 1s 1t public?

case 2: you want to make 1t public to test it
case 3: you want to make 1t private

case 4: change the name of the function

0P 0@ P o°

go to the top

check if 1t's exported

write the name (again) and write the arity

to rename: change the name in multiple places
come back here agailn

of of o2 of o

foo(<patternl>) ->
<bodyl>;

foo(<pattern2>) ->
<body2>;

foo(<pattern3>) ->
<body3>.



@public

foo = fn (<patternl>)

<bodyl>

fn (<pattern2>)

<body2>

fn (<pattern3>)
<body3>




What sucks about Erlang




Erlang Is based originally on Prolog, a logic
programming language that was briefly hot in
the 80's. Surely you've seen other languages
based on Prolog, right? No? Why not?
Because Prolog sucks ass for building entire
applications. But that hasn't deterred Erlang
from stealing it's dynamite syntax.



Erlang is amazing in ways it would
take a whole book to describe
properly. It's not a toy built to
satisfy the urges of academics, It's
used In successful, real world
proaducts.






(X)) ->

X1l = foo(X),
X2 = fab(X1),
X3 = bar(X2),

baz (X3).



f = fn(X)
X->foo()->fab()->bar()->baz()



call in if = fn (A, B)
1f some function(A)
something

else 1f some function(B)
something else

else
another thing



Technical Stuft



leex, yecc



lexer —» post lexer — parser -
post parser — compiler



lexer

- leex

post lexer

- nhormalize tokens

parser

— YyeccC

post parser

- attributes, @public, -module, -export
compiler

— compile:forms



post lexer

- fnc -t lex file.fn
parser

- fnc -t tree file.fn
posSt parser

- fnc -t ast file.fn

- fnc -t mod file.fn
compiler

- fnc -t beam file.fn
- fnc file.fn



fnc -t erl file.fn
fnc -t fn file.fn
fnc -t ifn file.fn
fnc -c ‘'expression'’
fnc -C 'expression’
fnc -s



fnc program.fn
fn program function



T ests



Stabllity



Documentation



Future






Help!



Vol

Download it
Test It

Report bugs
Spread the word



Github Projects

- http://github.com/marianoguerra
Efene Repository

- http://github.com/marianoguerra/efene
Efene Blog

- http://efene.tumblr.com
Efene Website

- http://marianoguerra.com.ar/efene



Thanks



Questions?



