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10,000 ft Perspective

• Abstract properties are...

– More portable

– More stable

– More versatile

Actual design Product

Prototype

spec impl

Property-based tests
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Actual design
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Property-based tests

Product

spec impl

Trace output Logs

Property-based
analysis



The tracing and log analysis problem

The Protest project:The Protest project:

EU-funded research on Property-based Testing

Tracing and log analysis work package:Tracing and log analysis work package:
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• How to conduct safe and efficient run-time trace analysis on 

distributed systems?

• How to do advanced post-mortem log analysis?

– (or indeed log analysis on running systems?)

• Eventually reuse high-level properties from testing



Tracing support in Erlang

• The trace() BIFs

– Low-level trace message generation

– Dynamic control using Match Specifications

• The DBG application

– Command-line wrappers around the trace BIFs
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– Command-line wrappers around the trace BIFs

– (Redbug, a dbg alternative made by Mats Cronqvist)

• Observer, Trace Tool Builder, etop, et, pman

– Various loosely connected utilities

• Percept, eprof, cprof, fprof, instrument

– Profiling tools with different characteristics



Lots of functionality, Hard to Grep

ttb:format("tiger@durin-ttb", [{handler, et}])

(From Observer User’s Guide)
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Searching for the Sweet Spot

Ease

DBG

Onviso

TTB

Developed by
the ProTest project
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Power

Trace BIFs

DBG

Inviso

TTB



Multi-node Tracing in OTP

• dbg

– dbg:n(Nodename) includes a node in the traced set

• ttb

– ttb:tracer(Nodes, Options) sets up a multi-node trace

– ttb:stop([fetch]) fetches logs from traced nodes
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– ttb:stop([fetch]) fetches logs from traced nodes

– ttb:format(FileOrDir [,Options]) merges/processes the trace logs

– Meta-tracing, save config, run config, sequence trace support

• inviso

– Adds overload protection, heterogeneous tracing,

return value matching, autostart, trace cases, ...

– Steep learning curve



Onviso (means absolutely nothing)

• User-friendly API to Inviso (latin: “I inspect”)

– Set up and run tracing using only two commands

– Shortcuts for commonly used trace patterns (inspired by Redbug)

• Additional functionality

– Non-destructive merge of trace logs
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– Non-destructive merge of trace logs

– Useful defaults for merging and overload protection

– Trace node automatically reconnects to restarting target nodes

– “cli”, a wizard-like aide to defining trace cases

• Status: Work in Progress

– http://github.com/esl/onviso-dev



Demo – Starting the Nodes

> client:init(ServerNode). > server:start().

ClientNode ServerNode
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> onviso:trace(...).

TracerNode
onviso:trace([{server, loop, '_', []},

{client, put, '_', []},
{client, get, '_', return}],
['server@laptop',
'client@laptop'],
{all,[call]}).



Interrupting a Trace

• One of the nodes can be restarted:

client@laptop> init:restart().

client@laptop> client:init('server@laptop').

• By default Onviso will reconnect and resume tracing on the 
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• By default Onviso will reconnect and resume tracing on the 

client node.

• If the node restarts abruptly, some of the trace data may be 

lost (as the trace buffers might not be flushed to the files).

– Inviso (and thus, Onviso) can handle incomplete trace logs.



Stopping a Trace

• Every trace call returns a trace reference identifier. 

This id can be used to stop or merge a trace

> onviso:stop(Id).

• The traces are collected to files and 

Copyright 2010 Erlang Solutions, Ltd

• The traces are collected to files and 

distributed back to the Inviso control node



Onviso Command line interface

• Example of a higher-level

trace tool

• Help testers and support 

staff define and/or 

(inviso@debian)6> cli:start().
Onviso Demo GUI
========================================

> Main Menu
----------------------------------------
1) Add trace case 
2) List/Run trace cases 
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staff define and/or 

execute trace cases

2) List/Run trace cases 
3) Save configuration to file
4) Load configuration from file
5) Set the magic cookie
6) Exit
[Q] Choice [1-6] : 6

Exiting...ok
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EXAGO

εξαγω – Ancient Greek: “bring forth”



A “log mining” Approach

Audit log files

Intermediate 

Reader

• read, parse and 
correlate log files

Abstracter Event handler
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Intermediate 
data tables

Abstract sessions
(list of abstract events 
with timestamps)

Analysis report

• aggregate and abstract
log events

• intermediate error
reporting

Checker

• abstract state machine



Log Correlation Example
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Exago Status

• http://github.com/esl/Exago

• Two case studies

– Finding bugs in a well-tested stable system

– Using Exago in the early stages of development
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• Need more case studies

• Work on scalability

• Investigate applying QuickCheck’s Temporal Relations



Case Study: SMS Gateway

• Gateway times out, delivers a failure report to user

• SMSC finally reports successful delivery, gateway forwards it

[{"2008-08-07_05:34:10:862",mtcq_sms_billed},
{"2008-08-07_05:34:15:864",timeout},
{"2008-08-07_05:34:15:864",{mt_sms_del_failed,{"timedout"}}},
{"2008-08-07_05:34:21:275",mt_sms_accepted},
{"2008-08-07_05:34:29:010",mt_sms_del_succ}]
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• SMSC finally reports successful delivery, gateway forwards it

• User gets conflicting reports + could interfere with SMS retry

• 2 occurrences among 20,000 sessions in the log

– Exago pilot duration: 2 days

– System had been in production for two years...



Example

• A simplified, ideal SMS Gateway System
– http://github.com/esl/Exago/blob/master/apps/exago/test/etc_example_gen.erl

• CSV log files are artificially generated
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Parse and Resolve
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Parse and Resolve
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Parse and Resolve
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Aggregate
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Aggregate
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Aggregate
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Aggregate
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Abstract

• Transaction abstraction 

(optional)

– Can group related events 

into a single event

trans_abstrtrans_abstrtrans_abstrtrans_abstr((((EventListEventListEventListEventList) ) ) ) ---->>>>
case EventList of

[{TsReq, login_req, UserId},
{_TsAck, login_ack, UserId}] ->

{TsReq, login_succ, UserId};
...

end

[...,
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• Session abstraction

– Convert actual log events 

to symbolic values

abstr_smsabstr_smsabstr_smsabstr_sms({Ts,{File}}) ({Ts,{File}}) ({Ts,{File}}) ({Ts,{File}}) ---->>>>
{match,[Type]} =
re:run(File,"([^_]+)\\.log",

[{capture,[1],list}]).
{Ts, proplists:get_value(

Type, [{“Req”, reg}.
{“ReqSMS”, req_sms},
{"AckSMS“, ack_sms},
{"ReqAck“, req_ack},
{"ReqErr“, req_err}]}.

[...,
{sess_abstr,
fun(Trs) -> lists:map(fun abstr_sms/1, Trs) end},
...]

[...,
{trans_abstr, fun trans_abstr/1},
...]



Result of aggregation and abstraction
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Check

Every state transition
corresponds to a log entry

S
AckSMS(SMSId) ReqAck(Id)
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S: Success state, no 
monitoring error if the 
session terminates there.

F: Bad state, monitoring error
if the session terminates there.

FS
Req(TS3,Id)

ReqSMS(_,Id,_)AckSMS(SMSId)

ReqAck(Id)

Req(TS1,Id)



Check

• State machine specified as a 

Labelled Transition System

• Time constraints for 

transitions in 1/10th sec

{statem,
[{states, [0,1,2,3,4,5,6]},
{trans,  [{0,1,req},

{1,2,req_sms, {lt,30}},
{2,3,ack_sms},
{3,4,req_ack},
{1,5,req_err, {geq,30}},
{5,6,req_ack},
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• Not all terminal states are 

“good” states

{5,6,req_ack},
{5,6,ack_sms},
{4,6,req},
{4,6,req_sms}]},

{terminal,[4,5,6]},
{good,    [4,5]}]

}.



Check

• No matching transition within time constraint 

for req_sms in state 1

{"1"}

{ { {{2009,2,26},{14,53,20}}, 0},     req}    
According to spec, 
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{ { {{2009,2,26},{14,53,28}}, 70162}, req_sms}

{ { {{2009,2,26},{14,53,28}}, 87006}, ack_sms}   

{ { {{2009,2,26},{14,53,29}}, 20445}, req_ack}

According to spec, 

request should time out

after 3 seconds.



Summary

• A language-agnostic, high-level, multi-log analysis tool

• Pluggable with custom parsers, filters and checkers

• Has found bugs in mature commercial systems with little effort

http://github.com/esl/Exago
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• http://github.com/esl/Exago

• Future work:

– Scalability

– Integration with QuickCheck

– Test on more products from different domains



Thank you

Questions?
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Questions?


