
Onviso and Exago

Tracing and log analysis in multiple-node environments

Erlang Solutions Ltd.

Tracing and log analysis in multiple-node environments

Ulf Wiger, Bartłomiej Puzoń, Atilla Erdődi

Erlang Solutions Ltd

Erlang Factory, London, 10 June 2010

10,000 ft Perspective

• Abstract properties are...

– More portable

– More stable

– More versatile

Actual design Product

Prototype

spec impl

Property-based tests

Copyright 2010 Erlang Solutions, Ltd

Actual design

spec impl

Property-based tests

Product

spec impl

Trace output Logs

Property-based
analysis

The tracing and log analysis problem

The Protest project:The Protest project:

EU-funded research on Property-based Testing

Tracing and log analysis work package:Tracing and log analysis work package:

Copyright 2010 Erlang Solutions, Ltd

• How to conduct safe and efficient run-time trace analysis on

distributed systems?

• How to do advanced post-mortem log analysis?

– (or indeed log analysis on running systems?)

• Eventually reuse high-level properties from testing

Tracing support in Erlang

• The trace() BIFs

– Low-level trace message generation

– Dynamic control using Match Specifications

• The DBG application

– Command-line wrappers around the trace BIFs

Copyright 2010 Erlang Solutions, Ltd

– Command-line wrappers around the trace BIFs

– (Redbug, a dbg alternative made by Mats Cronqvist)

• Observer, Trace Tool Builder, etop, et, pman

– Various loosely connected utilities

• Percept, eprof, cprof, fprof, instrument

– Profiling tools with different characteristics

Lots of functionality, Hard to Grep

ttb:format("tiger@durin-ttb", [{handler, et}])

(From Observer User’s Guide)

Copyright 2010 Erlang Solutions, Ltd

Searching for the Sweet Spot

Ease

DBG

Onviso

TTB

Developed by
the ProTest project

Copyright 2010 Erlang Solutions, Ltd

Power

Trace BIFs

DBG

Inviso

TTB

Multi-node Tracing in OTP

• dbg

– dbg:n(Nodename) includes a node in the traced set

• ttb

– ttb:tracer(Nodes, Options) sets up a multi-node trace

– ttb:stop([fetch]) fetches logs from traced nodes

Copyright 2010 Erlang Solutions, Ltd

– ttb:stop([fetch]) fetches logs from traced nodes

– ttb:format(FileOrDir [,Options]) merges/processes the trace logs

– Meta-tracing, save config, run config, sequence trace support

• inviso

– Adds overload protection, heterogeneous tracing,

return value matching, autostart, trace cases, ...

– Steep learning curve

Onviso (means absolutely nothing)

• User-friendly API to Inviso (latin: “I inspect”)

– Set up and run tracing using only two commands

– Shortcuts for commonly used trace patterns (inspired by Redbug)

• Additional functionality

– Non-destructive merge of trace logs

Copyright 2010 Erlang Solutions, Ltd

– Non-destructive merge of trace logs

– Useful defaults for merging and overload protection

– Trace node automatically reconnects to restarting target nodes

– “cli”, a wizard-like aide to defining trace cases

• Status: Work in Progress

– http://github.com/esl/onviso-dev

Demo – Starting the Nodes

> client:init(ServerNode). > server:start().

ClientNode ServerNode

Copyright 2010 Erlang Solutions, Ltd

> onviso:trace(...).

TracerNode
onviso:trace([{server, loop, '_', []},

{client, put, '_', []},
{client, get, '_', return}],
['server@laptop',
'client@laptop'],
{all,[call]}).

Interrupting a Trace

• One of the nodes can be restarted:

client@laptop> init:restart().

client@laptop> client:init('server@laptop').

• By default Onviso will reconnect and resume tracing on the

Copyright 2010 Erlang Solutions, Ltd

• By default Onviso will reconnect and resume tracing on the

client node.

• If the node restarts abruptly, some of the trace data may be

lost (as the trace buffers might not be flushed to the files).

– Inviso (and thus, Onviso) can handle incomplete trace logs.

Stopping a Trace

• Every trace call returns a trace reference identifier.

This id can be used to stop or merge a trace

> onviso:stop(Id).

• The traces are collected to files and

Copyright 2010 Erlang Solutions, Ltd

• The traces are collected to files and

distributed back to the Inviso control node

Onviso Command line interface

• Example of a higher-level

trace tool

• Help testers and support

staff define and/or

(inviso@debian)6> cli:start().
Onviso Demo GUI
==

> Main Menu
--
1) Add trace case
2) List/Run trace cases

Copyright 2010 Erlang Solutions, Ltd

staff define and/or

execute trace cases

2) List/Run trace cases
3) Save configuration to file
4) Load configuration from file
5) Set the magic cookie
6) Exit
[Q] Choice [1-6] : 6

Exiting...ok

Copyright 2010 Erlang Solutions, Ltd

EXAGO

εξαγω – Ancient Greek: “bring forth”

A “log mining” Approach

Audit log files

Intermediate

Reader

• read, parse and
correlate log files

Abstracter Event handler

Copyright 2010 Erlang Solutions, Ltd

Intermediate
data tables

Abstract sessions
(list of abstract events
with timestamps)

Analysis report

• aggregate and abstract
log events

• intermediate error
reporting

Checker

• abstract state machine

Log Correlation Example

Copyright 2010 Erlang Solutions, Ltd

Exago Status

• http://github.com/esl/Exago

• Two case studies

– Finding bugs in a well-tested stable system

– Using Exago in the early stages of development

Copyright 2010 Erlang Solutions, Ltd

• Need more case studies

• Work on scalability

• Investigate applying QuickCheck’s Temporal Relations

Case Study: SMS Gateway

• Gateway times out, delivers a failure report to user

• SMSC finally reports successful delivery, gateway forwards it

[{"2008-08-07_05:34:10:862",mtcq_sms_billed},
{"2008-08-07_05:34:15:864",timeout},
{"2008-08-07_05:34:15:864",{mt_sms_del_failed,{"timedout"}}},
{"2008-08-07_05:34:21:275",mt_sms_accepted},
{"2008-08-07_05:34:29:010",mt_sms_del_succ}]

Copyright 2010 Erlang Solutions, Ltd

• SMSC finally reports successful delivery, gateway forwards it

• User gets conflicting reports + could interfere with SMS retry

• 2 occurrences among 20,000 sessions in the log

– Exago pilot duration: 2 days

– System had been in production for two years...

Example

• A simplified, ideal SMS Gateway System
– http://github.com/esl/Exago/blob/master/apps/exago/test/etc_example_gen.erl

• CSV log files are artificially generated

Copyright 2010 Erlang Solutions, Ltd

Parse and Resolve

Copyright 2010 Erlang Solutions, Ltd

Parse and Resolve

Copyright 2010 Erlang Solutions, Ltd

Parse and Resolve

Copyright 2010 Erlang Solutions, Ltd

Copyright 2010 Erlang Solutions, Ltd

Copyright 2010 Erlang Solutions, Ltd

Copyright 2010 Erlang Solutions, Ltd

Aggregate

Copyright 2010 Erlang Solutions, Ltd

Aggregate

Copyright 2010 Erlang Solutions, Ltd

Aggregate

Copyright 2010 Erlang Solutions, Ltd

Aggregate

Copyright 2010 Erlang Solutions, Ltd

Abstract

• Transaction abstraction

(optional)

– Can group related events

into a single event

trans_abstrtrans_abstrtrans_abstrtrans_abstr((((EventListEventListEventListEventList)))) ---->>>>
case EventList of

[{TsReq, login_req, UserId},
{_TsAck, login_ack, UserId}] ->

{TsReq, login_succ, UserId};
...

end

[...,

Copyright 2010 Erlang Solutions, Ltd

• Session abstraction

– Convert actual log events

to symbolic values

abstr_smsabstr_smsabstr_smsabstr_sms({Ts,{File}}) ({Ts,{File}}) ({Ts,{File}}) ({Ts,{File}}) ---->>>>
{match,[Type]} =
re:run(File,"([^_]+)\\.log",

[{capture,[1],list}]).
{Ts, proplists:get_value(

Type, [{“Req”, reg}.
{“ReqSMS”, req_sms},
{"AckSMS“, ack_sms},
{"ReqAck“, req_ack},
{"ReqErr“, req_err}]}.

[...,
{sess_abstr,
fun(Trs) -> lists:map(fun abstr_sms/1, Trs) end},
...]

[...,
{trans_abstr, fun trans_abstr/1},
...]

Result of aggregation and abstraction

Copyright 2010 Erlang Solutions, Ltd

Check

Every state transition
corresponds to a log entry

S
AckSMS(SMSId) ReqAck(Id)

Copyright 2010 Erlang Solutions, Ltd

S: Success state, no
monitoring error if the
session terminates there.

F: Bad state, monitoring error
if the session terminates there.

FS
Req(TS3,Id)

ReqSMS(_,Id,_)AckSMS(SMSId)

ReqAck(Id)

Req(TS1,Id)

Check

• State machine specified as a

Labelled Transition System

• Time constraints for

transitions in 1/10th sec

{statem,
[{states, [0,1,2,3,4,5,6]},
{trans, [{0,1,req},

{1,2,req_sms, {lt,30}},
{2,3,ack_sms},
{3,4,req_ack},
{1,5,req_err, {geq,30}},
{5,6,req_ack},

Copyright 2010 Erlang Solutions, Ltd

• Not all terminal states are

“good” states

{5,6,req_ack},
{5,6,ack_sms},
{4,6,req},
{4,6,req_sms}]},

{terminal,[4,5,6]},
{good, [4,5]}]

}.

Check

• No matching transition within time constraint

for req_sms in state 1

{"1"}

{ { {{2009,2,26},{14,53,20}}, 0}, req}
According to spec,

Copyright 2010 Erlang Solutions, Ltd

{ { {{2009,2,26},{14,53,28}}, 70162}, req_sms}

{ { {{2009,2,26},{14,53,28}}, 87006}, ack_sms}

{ { {{2009,2,26},{14,53,29}}, 20445}, req_ack}

According to spec,

request should time out

after 3 seconds.

Summary

• A language-agnostic, high-level, multi-log analysis tool

• Pluggable with custom parsers, filters and checkers

• Has found bugs in mature commercial systems with little effort

http://github.com/esl/Exago

Copyright 2010 Erlang Solutions, Ltd

• http://github.com/esl/Exago

• Future work:

– Scalability

– Integration with QuickCheck

– Test on more products from different domains

Thank you

Questions?

Copyright 2010 Erlang Solutions, Ltd

Questions?

