
Clash of the Titans:
Erlang Clusters

and Google AppEngine

The need

To build a tool that helps us
manage the people in our lives,

like the super star personal
assistant we always dreamt of!

SocialCaddy was born.

The quest

To build an application that
would scale smoothly,

without being hammered
down by costs.

Note: Greeks don’t enjoy
system administration.

The quest

The solution

wasn’t it obvious?

Note: Greeks don’t enjoy
system administration.

The problem

Importing and merging 500
users by breaking into

background tasks
worked nicely.

Note: Greeks don’t enjoy
system administration.

The problem

But when we tried with
3000 users we hit the first

restrictions

Time for the big guys

And now?

 BERT-rpc (Github)>too
complicated, battletested,

customized for GAE

The experiments

Stackless Python
> it’s not Erlang

The experiments

Disco project Map/Reduce
> too expensive and lot’s of

rewrites

The experiments

It was time to build our own
distributed platform using the

right tools

The solution

Simplicity
Language agnostic

Tight integration with GAE

The requirements

The soap-opera

(the characters)

We always knew that
AppEngine would be great to
serve our data but a pain to

process the data

The soap-opera

We tried to break data in small
chunks> background tasks.

“OMG it works! TechCrunch

here we come”

The soap-opera

We celebrated our victory of
importing and merging

500-600 contacts on GAE

“OMG! Google I/O
here we come!”

The soap-opera

We poured a scotch and
waited for Nikos to test.

Before the first sip,
GAE had died.

The soap-opera

Merging the data has
polyonimal complexity and as
data grows time is needed.

And it gets worse: We only
have 30 seconds!

Why so serious?

Bye bye to GAE and
to zero-administration or

deep into Erlang

Tough decisions!

Erlust was born!

The solution

The solution

We use battle tested software
such as MochiWeb and

RabbitMQ combined with our
beloved Python libs and the

GAE remote API.

The solution

That’s right! We run the same
merge algorithm on Erlust. We

left back the smashed GAE
quotas and the deadline

exceeded errors and entered
the world of set and forget

Reducing Map/Reduce

Map/Reduce needs lots of
resources and we come from

semi-bankrupt Greece :)
We chose the Consumer/

Producer architecture that
allowed us to control resources

Some code

 "job": {
 "id": "1",
 "when": "now",
 "callback_url": "autogenerated",
 "security_hash": "secret",
 "language": "python",
 "num_of_nodes": "4",
 "source": open("gmail_consumer.py", "r").read()
 }

Overview

How does it work?

GAE tells the consumer to get the data
Once the producers have finished, GAE tells
Erlust to Rock n Roll (fire off the consumers

that crunch the data in parallel)
Once a consumer is finished it sends the
crunched to GAE via JSON requests or

Remote API

The best part?

Erlust does not know about the code and
we never tell it to checkout biz logic code
GAE sends to Erlust the code to execute.

Even better we do this in the famous
AppEngine one-click deploy

VERY easy to use!

Some more code

def main():
 node.ready()
 queue = node.q_connect("fb_updates")

 nd = node.q_get(queue)
 while nd:
 calc(nd):
 nd = node.q_get(queue)

 node.q_close(queue)
 node.done()

UI, Ruby node libs,
monitoring, more generic

and many more...
Open Source when ready.

And now?

Thanks for watching

..and a small present!

Be the first to check
SocialCaddy alpha

but please be gentle..!

alpha.socialcaddy.com

code: erlangrulez

Questions?
jon@socialcaddy.com,

panos@socialcaddy.com,
nikos@socialcaddy.com

stay tuned!
blog.socialcaddy.com

mailto:jon@socialcaddy.com
mailto:jon@socialcaddy.com
mailto:panos@socialcaddy.com
mailto:panos@socialcaddy.com

