
Mnesia for the CAPper

Erlang Solutions Ltd.

Ulf Wiger

Erlang Solutions Ltd

Erlang Factory, London, 11 June 2010

The Mnesia DBMS

• A fast ACID in-memory DBMS

• Tightly integrated with the language

• Old, tried and true

ACID:

• Atomicity

• Consistency

• Isolation

• Durability

Copyright 2010 Erlang Solutions Ltd

• Is it still competitive?

• Is it suitable for

CAP-style database apps?

The CAP Theorem:

• “Consistency

• Atomicity

• Partition Tolerance

— pick any two.” (Eric Brewer)

Outline

• Cool things about Mnesia

• Some not-so-cool things

• Some recent developments

Copyright 2010 Erlang Solutions Ltd

The convenient database

• Fully integrated into OTP

• Create schema and tables

on the fly

• No language impedance

1> mnesia:create_schema([node()]).
ok

2> mnesia:start().
ok

3> mnesia:create_table(t,
[{disc_copies,[node()]}]).

{atomic,ok}

Copyright 2010 Erlang Solutions Ltd

• No language impedance

mismatch

• Client and data in the

same memory space

– without sacrificing safety

4> [mnesia:dirty_write(
{t,N,N*1000}) ||
N <- lists:seq(1,30)].

[ok,ok,ok,...]

5> Q = qlc:q([S ||
{t,N,S} <- mnesia:table(t),

3 < N, N < 7]).
{qlc_handle...}

6> mnesia:transaction(fun() -> qlc:e(Q) end).
{atomic,[4000,5000,6000]}

...and fast, too

• In benchmarks done at Ericsson a few years ago

– Mnesia tied the best commercially available cluster DBMS (Clustra)

for transaction throughput and scalability

– Two in-house products were faster – one became MySQL Cluster (NDB)

– Mnesia beat them all on response times

Copyright 2010 Erlang Solutions Ltd

• Linear scalability up to at least 50 nodes

– If the data model is ideal for fragmentation

• A “dirty read” in Mnesia takes ~5-50 µsec (for relatively small objects)

– Not possible to match when crossing memory protection boundaries

Rugged

• The “D” in “ACID” stands for Durability

• Committed transactions can be rolled forward

– Nodes may crash during two-phase commit

Copyright 2010 Erlang Solutions Ltd

– Nodes may crash during two-phase commit

• Disk-based tables are repaired automatically

Rugged

• Diskless nodes can be

added ad-hoc...

n1 n2

n3 n4 n5 n6 ...

{extra_db_nodes, [n1@host1, n2@host2]}

Copyright 2010 Erlang Solutions Ltd

• ...and easily converted

to disk-based nodes

{extra_db_nodes, [n1@host1, n2@host2]}

n1 n2

n3 ...

mnesia:change_table_copy_type(
schema, n6@host6, disc_copies).

n6...

Rugged

• If a disk copy becomes

corrupt...

n1 n2

n1 n2

Copyright 2010 Erlang Solutions Ltd

• It can be automatically

rebuilt from the cluster

– Start with extra_db_nodes

n1 n2

rm –r $MNESIA_DIR/*

n1 n2

Naughty database...

• Subversion is optional • Transaction commits

with roll-forward

• Note: dirty writes give no

consistency guaranteeslocking

consistency
transaction/

sync_transaction

Copyright 2010 Erlang Solutions Ltd

consistency guarantees

– best-effort replication

• Dirty deeds from within

transactions can yield

some nasty surprises
detsets

replication

indexing

locking

dirty/
sync_dirty

ets

location

The Isolation Property

• Nested transactions:

– A new transaction store

is created

– All data copied

from store A to store B
Temporary
transaction store

Copyright 2010 Erlang Solutions Ltd

from store A to store B

– On commit, all data is

copied back

• Dirty reads know nothing

of the transaction store

Temporary
transaction store

Mnesia tables

Commit

Fragmented Databases (sharding)

• (Almost) transparent to the user

• Semi-automatic or manual

configuration

• Each fragment a first-class table

– Can be indexed, replicated, etc.

Custom key distribution

Copyright 2010 Erlang Solutions Ltd

– Can be indexed, replicated, etc.

• All fragments must be available

at all times

– Number of fragment replicas

rather than R/W parameters

http://igorrs.blogspot.com/2009/11/consistent-hashing-for-mnesia-fragments.html

1
1

2
2

34
4

3

Extensible

• Activity callback modules

– Extend or modify Mnesia’s

semantics

– Per-transaction or as a

global default

write(Tid, Ts, Tab, Rec, Lock) ->
VMod = ?vmod,
validate_recvalidate_recvalidate_recvalidate_rec(Tab, Rec, VMod),
do_write(Tid, Ts, Tab, Rec, Lock, VMod),
check_referencescheck_referencescheck_referencescheck_references(Tab, Rec, write, VMod).

do_write(Tid, Ts, WTab, WRec, Lock, VMod) ->
AMod = module(WTab, VMod),
AMod:write(Tid, Ts, WTab, WRec, Lock),
rdbms_index:update_indexrdbms_index:update_indexrdbms_index:update_indexrdbms_index:update_index(

rdbms.erl:

Copyright 2010 Erlang Solutions Ltd

global default

• Fragmented tables

implemented as an

activity callback

– (but using some ugly hacks)

rdbms_index:update_indexrdbms_index:update_indexrdbms_index:update_indexrdbms_index:update_index(
Tid Ts, WTab, write,
WRec, LockKind, VMod).

1> mnesia:activitymnesia:activitymnesia:activitymnesia:activity(
transactiontransactiontransactiontransaction,
fun() ->

[Old#person{age = Age}] =
mnesia:read({person, Id}),

Older = Old#person{age = Age+1},
mnesia:write(Older)

end, rdbmsrdbmsrdbmsrdbms).
ok

Some nifty bits

• Asymmetric locking (“sticky locks”)

– If all locking is done from one node, no network activity needed

• Incremental backup

– Supported, but practically undocumented

Copyright 2010 Erlang Solutions Ltd

• Automatic SNMP hooks

– Declare a MIB as a mnesia table, instrumentation for free

• Automatic repair + checkpointing

– Presumably brings up a consistent database each time

• ‘Install fallback’ for automatic recovery from backup

– Used during in-service upgrade

Geographic redundancy?

• Not really

• However, mnesia is tolerant to

network delays

• Replicas can be distributed

Copyright 2010 Erlang Solutions Ltd

• Replicas can be distributed

explicitly

– Possibly across data centers

• Schema must be fully replicated

Not-so-hot stuff

• Disk-only copies limited to 2 GB/table instance

– Silently fails if you exceed the limit

• No concurrent versions of the schema

– Redundancy upgrade becomes extremely difficult

Copyright 2010 Erlang Solutions Ltd

• Deadlock prevention scales poorly to massive concurrency

– ...but possibly better than other known techniques

• Imperative data definition API

• Partitioned network handling (more later)

• Overload handling (more later)

Split-brain (partitioned network)

• Network failure is indistinguishable from normal node-downs

• When nodes are reconnected, database can be inconsistent

• Pathological problem in general

Mnesia detects the condition

Copyright 2010 Erlang Solutions Ltd

• Mnesia detects the condition

– Issues a “running partitioned network” event

– Refuses to merge the tables

Split-brain (partitioned network)

• Only remedy offered:

– Call mnesia:set_master_nodes([N]) on one side

– Restart other side; unconditionally load data from N

– Data loss is very likely

• You have to write code to manage it!

Copyright 2010 Erlang Solutions Ltd

• You have to write code to manage it!

• Smooth recovery has not been possible

The ‘unsplit’ Application

“Running_partitioned_network”“Running_partitioned_network”

table

handler handler

table

Copyright 2010 Erlang Solutions Ltd

• Install an event handler on each node (automatic)

• When triggered, grab a global lock (global:trans/2)

– The one who wins, resolves the conflict

• Merge the schema, lock tables, and merge in one operation

– Requires a mnesia patch (or OTP R14B, released 16 June)

How to merge

• Vector clock implementation borrowed from Riak

mnesia:create_table(test,[{ram_copies,[n1@debian,n2@debian]},
{attributes,record_info(fields, test)},
{{{{user_propertiesuser_propertiesuser_propertiesuser_properties,,,,
[{[{[{[{unsplit_methodunsplit_methodunsplit_methodunsplit_method,{,{,{,{unsplit_lib,vclockunsplit_lib,vclockunsplit_lib,vclockunsplit_lib,vclock,,,,

[#[#[#[#test.vclocktest.vclocktest.vclocktest.vclock]}}]}]}}]}]}}]}]}}]}
]).

Position of
vclock attr

Copyright 2010 Erlang Solutions Ltd

• Other methods possible

– Predefined methods: last_modified, bag, ...

• The unsplit_reporter module can be used

to report inconsistencies

– Sends “summary alarm” to alarm_handler in SASL

– Collects conflicting records in a temp table for inspection

Automatic updating of Vector Clocks

• mnesia:activity(transaction, Fun, my_mnesia_cb)

• Make a hook function for write(Tid,Ts,Tab,Rec,LockKind)

• Suggestion: exprecs for generic record attribute access:

Copyright 2010 Erlang Solutions Ltd

-module(my_mnesia_cb).
...
-include(“table_defs.hrl”).
-include(“exprecs.hrl”).
-export_records([....]).

write(Tid, Ts, Tab, Rec, LockKind) ->
Rec1 = try Old = ‘#get-’(Rec, [vclock]),

‘#set-’(Rec, [{vclock, unsplit_vclock:increment(node(), Old)}])
catch

error:badarg ->
Rec

end,
mnesia:write(Tid,Ts,Tab,Rec1,LockKind).

Making use of the ‘exprecs’ utility
http://github.com/esl/parse_trans

Dealing with conflicts

• Riak keeps a set of values for each key

– Normally only one value

– Multiple values if automatic conflict resolution impossible

• Mnesia could too

– #record{key = K, values = [V]}

Copyright 2010 Erlang Solutions Ltd

– #record{key = K, values = [V]}

• This is not how people usually design their data model

• Does not work together with mnesia’s indexing...

Work in progress

• http://github.com/esl/unsplit

http://github.com/esl/parse_trans (for exprecs)

http://github.com/uwiger/otp/tree/schema_merge

(the mnesia patch)

• Possibly vie for inclusion into OTP

Copyright 2010 Erlang Solutions Ltd

• Possibly vie for inclusion into OTP

• NOTE! Problem is still very hard

– You need to plan your data model

– Prepare for inconsistencies

• Split happens – this might at least give you a chance to cope

Overload

• Swamping the message queue of

a remote mnesia_tm

– Mnesia sends an event if it happens

– Very difficult to be pro-active

• Overlapping transaction log

mnesia_tm mnesia_tm

“overload!”

Copyright 2010 Erlang Solutions Ltd

• Overlapping transaction log

dump intervals

– Mnesia sends an event...

• It does not tell you when

it’s no longer overloaded!

mnesia_tm

LATEST_LOG

Tables...

mnesia_dumper

Slight remedy

• A new (undocumented) API to sample overload

• Intended to be called from a load regulation component

• Will be part of OTP R14B

http://github.com/uwiger/otp/tree/mnesia_overload

Copyright 2010 Erlang Solutions Ltd

• http://github.com/uwiger/otp/tree/mnesia_overload

(patch on R13B)

mnesia_lib:overload_read() -> [{Type,boolean()]

Type = mnesia_tm | mnesia_dump_log

Summary

• Mnesia has a few miles in it yet

• Biggest wart: lack of a scalable disk back-end

– Fixable problem

– Has been done a few times already

– Replica sync logic might need to be revisited

Copyright 2010 Erlang Solutions Ltd

– Replica sync logic might need to be revisited

• Medium wart: Dirty write unsafe on replicated data

– Not as easily fixed as one might think

– ‘dirty_transaction’? Like a transaction but without locks...

• True geographic redundancy would be nice

