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Hibari Open Source project: http://sourceforge.net/projects/hibari/
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• Founded: July, 2001

• Offices: San Francisco, Tokyo, Beijing

• Investors: 
– Goldman Sachs, Mitsubishi-UFJ, Mizuho, Nomura, Ignite, Access, Aplix

• Accomplishments:

– Messaging Products
• Provide MMSC to 3 out of 4 Carriers in Japan (DoCoMo, Softbank, 

eMobile)

• Largest MMSC in the world (Softbank Japan)

• OEM to Alcatel-Lucent and ByteMobile

– NOSQL / Big Data
• 2006: First Mobile 3D SNS (Softbank, China Unicom, iPhone App)

• 4/2010: WebMail, Japanese Mobile Carrier & Internet Provider

• 7/2010: Hibari Open Source

Introduction
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Customers
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Hibari (= Cloud Birds)
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What is Hibari?

• Hibari is a production-ready, distributed, key-value, big 
data store.

– China Mobile and China Unicom - SNS

– Japanese internet provider - GB mailbox webmail

– Japanese mobile carrier - GB mailbox webmail

• Hibari uses chain replication for strong consistency, high-
availability, and durability.

• Hibari has excellent performance especially for read and 
large value operations.

• Hibari is open-source software under the Apache 2.0 
license.
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Environments

• Hibari runs on commodity, heterogeneous servers.

• Hibari supports Red Hat, CentOS, and Fedora Linux 
distributions.

– Debian, Ubuntu, Gentoo, Mac OS X, and Free BSD are coming 
soon.

• Hibari supports Erlang/OTP R13B04.

– R14B is coming soon.

• Hibari supports Amazon S3, JSON-RPC-RFC4627, 
UBF/EBF/JSF and native Erlang client APIs.

– Thrift API was open sourced last week.
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Why NOSQL?

• Big Data

– Several million end users from the start

– Several billion messages in a few months

– Hundreds of TB data

• Low Cost requirements

– Customer’s business model (Freemium)

– Distributed >50 PC servers

– No need for rich and expensive functions of SQL

• Continuous growth of data in the storage

– Elasticity to expand capacity due to increasing data

We needed to build a scalable, high performance 
web mail system 



8

What were the customer’s needs?

• Durability
– Data loss (e.g., messages, metadata) is not acceptable

• Strong Consistency
– Because of interactive sessions, consistency is required

• Low Latency
– <1 sec response time for end user transactions

• High Availability
– As a branded service to the end user, service must always be 

available. 

• Read Heavy
– Many more read than write operations

• Big Data and Data size highly variable
– Large GB mail box as service differentiator was required

– Mail messages range from a few bytes to many MB with 
attachments
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How does Hibari address these needs?

• Durable updates
Every update is written and flushed to stable storage (fsync() system call) 
before sending acknowledgments to the client.

• Consistent updates
After an update is acknowledged, no client can see an older 
version. ”Chain Replication” is used to maintain consistency across all 
replicas.

• High Availability
Each key can be replicated multiple times. As long as one copy of the key 
survives, all operations on that key are permitted.

• Lockless API
Locks are not required for all client operations. Optionally, Hibari supports 
“test-and-set” of each key-value pair via an increasing (enforced by the 
server) timestamp value.

• Micro-transactions  
Under limited circumstances, operations on multiple keys can be given 
transactional commit/abort semantics.
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Why Erlang?

• Concurrency and Distribution

• Robustness

• Efficient garbage collection

• Hot code and incremental upgrade

• Online tracing

• Efficiency and Productivity

– Small teams make big impact

• Ericsson’s support of Erlang/OTP is wonderful

Everything you need to build robust, high performance 
distributed systems



11

Chain Replication for Strong Consistency

Data Model

Key Value Table
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Concept of “Chain”

Evenly distributed load in multiple nodes

(Case of 3 replications/6 chains)
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Chain Replication for High Availability 
and Fault Tolerance

Failover mechanism
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Hibari Benchmarking

Hibari’s benchmarking has been done with primarily 3 approaches 

In house 
tools

In house 
tools

Yahoo’s Cloud 
Storage 

Benchmark 
(YCSB) 

Yahoo’s Cloud 
Storage 

Benchmark 
(YCSB) 

Basho Bench 
(BB) 

Basho Bench 
(BB) 

• Micro benchmarks, standalone load client, and end-to-end as part 
of larger systems 

• C/C++ and Erlang based implementations 

• Good for Gemini’s internal use but not ideal for the open source 
community 

• New, easy to use Java-based load tool 

• Java implementation for Cassandra db driver and new Hibari db 
driver 

• But … investigating latency issues with Hibari’s YCSB db driver 

• Simple, easy to use Erlang-based load tool

• Erlang implementation for Cassandra db driver and new Hibari db 
driver

• But … traffic scenarios are not as full featured as YCSB and 
investigating stability issues with Cassandra’s BB db driver
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Test conditions

� Tool: Basho Bench - Hibari db driver and Cassandra db driver 
� Keys: 1 … 1,000,000 Truncated Pareto (20% of keys, 80% of time) 
� Values: 10K, 50k, 100K, and 150K
� Operations: 

� 20 minutes Random Put 
� 40 minutes Random Get/Put (50%/50%) 

� Replication factor: 2
� Disk sync of commit log: enabled 
� Storage: Keys RAM+DISK, Values DISK only

Hardware
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Test scenario

1.

2.
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“Hibari and Cassandra” results by 
Basho Bench tool
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Language (& Priority) Barriers

• Latency issues with Java load tool speaking with an 
Erlang NOSQL server 

• Stability issues with Erlang load tool speaking with a 
Java NOSQL server 

Further investigation is required to identify issues and 
areas of improvement. Our primary targets are 
Hibari, Cassandra, and the YCSB tool.
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“Applications / Customer first” approach 
leads to mutual complements

get/put/delete, micro-
transactions

get/put/delete, scan, 
map/reduce, atomic row ops

API

ErlangJavaImplementation 

read-optimizedwrite-optimizedPerformance

Admin UI with brick, chain 
health, statistics

nodetool, JMXO&M

Admin server monitorsPeer-to-peer monitor, gossipNode health 
detection

Chain migrationAdmin operations, Gossip, 
Data redistribution

Elasticity

Chain replicationPreference listsData replication

YesConfigurableData consistency

Consistent hashingConsistent hashingData partitioning

Key-valueColumn-orientedData model

Hibari(e.g.) CassandraFEATURE
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“Not Only Hibari” Roadmap

Hibari

Thrift Hadoop Map/Reduce

Pig

Monitoring tool
Configuration tool
Management tool

UBF

Client API

C++
Java
Python
Ruby
Perl
Google Buffer Protocol

Application 

tools

Open Source

Enterprise

Integration

Cassandra

•Based on customer needs
•Expect Open source contribution

Ubuntu
Gentoo
Debian
MacOS X
Free BSD

OS

Erlang 14BErlang 14A

Red Hat
Cent OS
Fedora

2010 2011～～～～

YCSB 

Basho Bench

Erlang
Amazon S3
JSON-RPC-RFC4627
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Thank you

Hibari Open Source project: http://sourceforge.net/projects/hibari/

Thrift: http://hibari.sourceforge.net/hibari-developer-guide.en.html#client-api-tbf

Hibari Twitter:  @hibaridb Hashtag: #hibaridb

Gemini Twitter: @geminimobile

Big Data blog: http://gemini-bigdata.com/

Slideshare: http://www.slideshare.net/geminimobile

“NOSQL Hands-on Training” will be started from 
December. Please follow @geminimobile


