
1

Hibari/Erlang/

NOSQL for

BIGDATA
November 2010

Gemini Mobile Technologies

hibaridb

Hibari Open Source project: http://sourceforge.net/projects/hibari/

22

• Founded: July, 2001

• Offices: San Francisco, Tokyo, Beijing

• Investors:
– Goldman Sachs, Mitsubishi-UFJ, Mizuho, Nomura, Ignite, Access, Aplix

• Accomplishments:

– Messaging Products
• Provide MMSC to 3 out of 4 Carriers in Japan (DoCoMo, Softbank,

eMobile)

• Largest MMSC in the world (Softbank Japan)

• OEM to Alcatel-Lucent and ByteMobile

– NOSQL / Big Data
• 2006: First Mobile 3D SNS (Softbank, China Unicom, iPhone App)

• 4/2010: WebMail, Japanese Mobile Carrier & Internet Provider

• 7/2010: Hibari Open Source

Introduction

3

Customers

4

Hibari (= Cloud Birds)

5

What is Hibari?

• Hibari is a production-ready, distributed, key-value, big
data store.

– China Mobile and China Unicom - SNS

– Japanese internet provider - GB mailbox webmail

– Japanese mobile carrier - GB mailbox webmail

• Hibari uses chain replication for strong consistency, high-
availability, and durability.

• Hibari has excellent performance especially for read and
large value operations.

• Hibari is open-source software under the Apache 2.0
license.

6

Environments

• Hibari runs on commodity, heterogeneous servers.

• Hibari supports Red Hat, CentOS, and Fedora Linux
distributions.

– Debian, Ubuntu, Gentoo, Mac OS X, and Free BSD are coming
soon.

• Hibari supports Erlang/OTP R13B04.

– R14B is coming soon.

• Hibari supports Amazon S3, JSON-RPC-RFC4627,
UBF/EBF/JSF and native Erlang client APIs.

– Thrift API was open sourced last week.

7

Why NOSQL?

• Big Data

– Several million end users from the start

– Several billion messages in a few months

– Hundreds of TB data

• Low Cost requirements

– Customer’s business model (Freemium)

– Distributed >50 PC servers

– No need for rich and expensive functions of SQL

• Continuous growth of data in the storage

– Elasticity to expand capacity due to increasing data

We needed to build a scalable, high performance
web mail system

8

What were the customer’s needs?

• Durability
– Data loss (e.g., messages, metadata) is not acceptable

• Strong Consistency
– Because of interactive sessions, consistency is required

• Low Latency
– <1 sec response time for end user transactions

• High Availability
– As a branded service to the end user, service must always be

available.

• Read Heavy
– Many more read than write operations

• Big Data and Data size highly variable
– Large GB mail box as service differentiator was required

– Mail messages range from a few bytes to many MB with
attachments

9

How does Hibari address these needs?

• Durable updates
Every update is written and flushed to stable storage (fsync() system call)
before sending acknowledgments to the client.

• Consistent updates
After an update is acknowledged, no client can see an older
version. ”Chain Replication” is used to maintain consistency across all
replicas.

• High Availability
Each key can be replicated multiple times. As long as one copy of the key
survives, all operations on that key are permitted.

• Lockless API
Locks are not required for all client operations. Optionally, Hibari supports
“test-and-set” of each key-value pair via an increasing (enforced by the
server) timestamp value.

• Micro-transactions
Under limited circumstances, operations on multiple keys can be given
transactional commit/abort semantics.

10

Why Erlang?

• Concurrency and Distribution

• Robustness

• Efficient garbage collection

• Hot code and incremental upgrade

• Online tracing

• Efficiency and Productivity

– Small teams make big impact

• Ericsson’s support of Erlang/OTP is wonderful

Everything you need to build robust, high performance
distributed systems

11

Chain Replication for Strong Consistency

Data Model

Key Value Table

Go to Chain A Go to Chain B

0…………n

Key

BLOB (Binary Large OBject)

Values

Key 1 Key 2 Key 3 ・ ・ ・ ・ Key n

Value Value Value ・ ・ ・ ・ Value

Al
l R

ep
lie

s

Head Middle Tail

Chain A

PC 1 PC 2 PC 3

Read

Request

W
rit

e

Re
qu

es
t

Head MiddleTail

PC 1 PC 2 PC 3

Read

Request
W

rit
e

Re
qu

es
t

Consistent Hashing

Chain B

Al
l R

ep
lie

s

12

Concept of “Chain”

Evenly distributed load in multiple nodes

(Case of 3 replications/6 chains)

PC 3 PC 4PC 2 PC 5PC 1 PC 6

TailMiddleHead

MiddleHeadTail

HeadTailMiddle

TailMiddleHead

MiddleHeadTail

HeadTailMiddle

Chain A

Chain B

Chain C

Chain D

Chain E

Chain F

13

Chain Replication for High Availability
and Fault Tolerance

Failover mechanism

PC 3

Tail

Middle

Head

PC 2

Middle

Head

Tail

PC 1

Head

Middle

Tail

Node down Service continuation

PC 3

Tail

Head

PC 2PC 1

Head

Tail Head

Tail

14

Hibari Benchmarking

Hibari’s benchmarking has been done with primarily 3 approaches

In house
tools

In house
tools

Yahoo’s Cloud
Storage

Benchmark
(YCSB)

Yahoo’s Cloud
Storage

Benchmark
(YCSB)

Basho Bench
(BB)

Basho Bench
(BB)

• Micro benchmarks, standalone load client, and end-to-end as part
of larger systems

• C/C++ and Erlang based implementations

• Good for Gemini’s internal use but not ideal for the open source
community

• New, easy to use Java-based load tool

• Java implementation for Cassandra db driver and new Hibari db
driver

• But … investigating latency issues with Hibari’s YCSB db driver

• Simple, easy to use Erlang-based load tool

• Erlang implementation for Cassandra db driver and new Hibari db
driver

• But … traffic scenarios are not as full featured as YCSB and
investigating stability issues with Cassandra’s BB db driver

15

Test conditions

� Tool: Basho Bench - Hibari db driver and Cassandra db driver
� Keys: 1 … 1,000,000 Truncated Pareto (20% of keys, 80% of time)
� Values: 10K, 50k, 100K, and 150K
� Operations:

� 20 minutes Random Put
� 40 minutes Random Get/Put (50%/50%)

� Replication factor: 2
� Disk sync of commit log: enabled
� Storage: Keys RAM+DISK, Values DISK only

Hardware

16

Test scenario

1.

2.

17

0

10

20

30

40

50

60

70

80

90

100

elapsed 500 1000 1500 2000

get 10K stub get 50K stub

get 100K stub get 150K stub

0

10

20

30

40

50

60

70

80

90

100

elapsed 500 1000 1500 2000

put 10K stub put 50K stub

put 100K stub put 150K stub

“Hibari Stub” results

Hibari Stub “get”
Average
Latency/msec Hibari Stub “put”

Average
Latency/msec

Sec elapsed Sec elapsed

18

0

10

20

30

40

50

60

70

80

90

100

elapsed 500 1000 1500 2000

get 10K get 50K get 100K get 150K

0

10

20

30

40

50

60

70

80

90

100

elapsed 500 1000 1500 2000

put 10K put 50K put 100K put 150K

0

10

20

30

40

50

60

70

80

90

100

elapsed 500 1000 1500 2000

get 10K get 50K get 100K get 150K

0

10

20

30

40

50

60

70

80

90

100

elapsed 500 1000 1500 2000

put 10K put 50K put 100K put 150K

“Hibari and Cassandra” results by
Basho Bench tool

Cassandra “get” Hibari “get”

Cassandra “put” Hibari “put”

Average
Latency/msec

Average
Latency/msec

Sec elapsed

Sec elapsed

Sec elapsed

Sec elapsed

Apache-Cassandra 0.6.5

19

Language (& Priority) Barriers

• Latency issues with Java load tool speaking with an
Erlang NOSQL server

• Stability issues with Erlang load tool speaking with a
Java NOSQL server

Further investigation is required to identify issues and
areas of improvement. Our primary targets are
Hibari, Cassandra, and the YCSB tool.

20

“Applications / Customer first” approach
leads to mutual complements

get/put/delete, micro-
transactions

get/put/delete, scan,
map/reduce, atomic row ops

API

ErlangJavaImplementation

read-optimizedwrite-optimizedPerformance

Admin UI with brick, chain
health, statistics

nodetool, JMXO&M

Admin server monitorsPeer-to-peer monitor, gossipNode health
detection

Chain migrationAdmin operations, Gossip,
Data redistribution

Elasticity

Chain replicationPreference listsData replication

YesConfigurableData consistency

Consistent hashingConsistent hashingData partitioning

Key-valueColumn-orientedData model

Hibari(e.g.) CassandraFEATURE

21

“Not Only Hibari” Roadmap

Hibari

Thrift Hadoop Map/Reduce

Pig

Monitoring tool
Configuration tool
Management tool

UBF

Client API

C++
Java
Python
Ruby
Perl
Google Buffer Protocol

Application

tools

Open Source

Enterprise

Integration

Cassandra

•Based on customer needs
•Expect Open source contribution

Ubuntu
Gentoo
Debian
MacOS X
Free BSD

OS

Erlang 14BErlang 14A

Red Hat
Cent OS
Fedora

2010 2011～～～～

YCSB

Basho Bench

Erlang
Amazon S3
JSON-RPC-RFC4627

22

Thank you

Hibari Open Source project: http://sourceforge.net/projects/hibari/

Thrift: http://hibari.sourceforge.net/hibari-developer-guide.en.html#client-api-tbf

Hibari Twitter: @hibaridb Hashtag: #hibaridb

Gemini Twitter: @geminimobile

Big Data blog: http://gemini-bigdata.com/

Slideshare: http://www.slideshare.net/geminimobile

“NOSQL Hands-on Training” will be started from
December. Please follow @geminimobile

