
Madcloud

Distributed State Machine Madness
Jacoby Thwaites, Google



What we'll cover in 30mins

1. The idea
2. Some examples
3. An implementation



The idea
A declarative call-out infrastructure

The inside-out API
Everything is a server
Nothing is a client

The infrastructure maintains process state

Purpose
Mutually ignorant services combine to form applications

A bit like BPEL
Eg

Some businesses who don't know each other 
collaborate to provide a service for a consumer they 
don't know



Example #1

This is pub/sub

We'll put the ops 
into 2 folders

One system opens 
a view on the first 

folder...

A different system 
opens a view on the 

other folder.



Example #1

This is like 
pub/sub topics

The fieldset 
state digraph is 
derived from the 
unordered set of 

operations



Example #1

Different 
systems can 
have different 

inputs

A single fieldset 
state can supply 

any op whose input 
is a subset



Example #1

A fieldset state 
can't supply an op's 

input if it doesn't 
have it.

:(

:(

:)



Example #1

Any one fieldset can 
supply any one op 

exactly once, during its 
lifetime

:)

:)

:)



Example #1

Probability cloud. Could 
be either sequenced, or 

in parallel

RR1& RR2 happen 
in parallel



Example #2 is a pub/rub/sub robot
This is a 

notification, or 
"N", op

This is a 
request/reply, or 

"RR" op

These are iterative 
request/reply, or "IRR" 

ops

IRR ops create 
new fieldsets!



Pause
before

Distributed State



Distributed state

1. A process means everything that happens 
because of a single Notification operation.

2. The process state is the set of fieldsets in 
existence at any one instant.

3. Each fieldset has a fieldset state at any one 
instant.

4. Fieldsets are independent.
So we can put the fieldsets in different 
datacenters

5. Ergo the state of a process is scattered across 
those datacenters.



Example #3



2 systems in 1 DC
Op Fieldsets in DC1
Start FS1: n=29
FirstDivisor FS1: n=29,d=3
Test FS1: n=29,d=3,MAYBE
Iterate FS2: n=29,d=5
Test FS2: n=29,d=5,MAYBE
Iterate FS3: n=29,d=7
Test FS3: n=29,d=7,YES
ShowPrime



2 systems, 2 DCs, no distributed state
Op Events 

across L1
Fieldsets in DC2

Start 0 FS1: n=29
FirstDivisor 2 FS1: n=29,d=3
Test 2 FS1: n=29,d=3,MAYBE
Iterate 2 FS2: n=29,d=5
Test 2 FS2: n=29,d=5,MAYBE
Iterate 2 FS3: n=29,d=7
Test 2 FS3: n=29,d=7,YES
ShowPrime 0

L1

=12



2 systems, 2 DCs, distributed state
Op Events 

across L1
Fieldsets in DC2 Fieldsets in DC3

Start FS1: n=29

FirstDivisor 2 FS1: n=29,d=3
Test 2 FS1: n=29,d=3,MAYBE
Iterate 1 FS2: n=29,d=5
Test FS2: n=29,d=5,MAYBE
Iterate FS3: n=29,d=7
Test FS3: n=29,d=7,YES
ShowPrime 1

L1

=6



Pause
before

Masks, Mutability and Sync



Simple Sync

Here's a template for each system
update field is defined in parent folder
 SYS field is defined in template folder, ie unique per 
instance

Visibly disambiguated here by calling it SYS_1
Mask set means, this op can't happen if the masked fields are 
present on the fieldset.



Simple Sync, 2 systems

Mutable process - just drop in more systems...



Simple Sync, 3 systems



Pause
before

Erlang Implementation



Erlang Implementation



Mnesia Program Tree



What follows?
Interesting use cases in Google

Highly parallelized, interactive processes eg in ads
Complements batch mapreduces

Call-out infrastructure for b2b2c applications

Mutable apps
Set of ops is unordered

Add/remove ops at will for a mutable process
Synchronization applications

Apps built from search
Set of ops is unordered
Set of ops can have massive redundancy

Doesn't matter if there are only 10 useful ops out of 1000 in the 
unordered set

Ops can self-render as (eg) web UI widgets
So we could use search to build apps


