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What Are IQ
Packets?

•Models request/response 
“conversations”

•Packet ids unique to an exchange

•Packet types: set, get, result, error
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IQ Packet

<iq id=”123” type=”set”

    from=”foo@localhost” to=”bar@localhost”>

  <event id=”98432” name=”Erlang Factory” />

</iq>
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What Are
My Options?
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1. ejabberd module
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Pros

•Fast

•Mostly easy

•Obvious
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Cons

•Wholly dependent on ejabberd

•Complicated deployment

•Lacking ejabberd docs
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2. Jabberlang
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Pros

•It exists

• (Mostly) works

•Removes ejabberd dependency
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Cons

•(Mostly) works

•Blocking send/receive

•Orphaned
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3. exmpp
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4. Write our own
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Pros

•Complete control over implementation

• Implement only what we need

•Tailored to integration needs
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Cons

•Complete control over implementation

•Never written an XMPP client before

•Tight schedule
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Introducing
natter
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What It Is

•XMPP library

•Computer-to-computer via XMPP

•IQ only

23



What It Isn’t

•General purpose chat library

•No message support

•No rosters

•Minimal presence
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natter_connection

natter_packetizer natter_dispatcher
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Connecting
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Config = [{host, “localhost”},

          {user, “foo”},

          {password, “bar”},

          {resource, “foo”}],

{ok, Cn} = natter_connection:start_link(Config).
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Receiving XMPP
Messages
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Exchanges

•Routes packets to interested processes

•XMPP messages are async
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{ok, Cn} = natter_connection:start_link(Config),

natter_connection:register_default_exchange(self(), Cn).
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natter_connection:register_exchange(Cn,

                                    “iq”,

                                    “bar@localhost”,

                                    self()).
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•Used to route incoming responses

•Live for a single IQ “conversation”

Temporary Exchanges
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XML Parsing

•Small C wrapper around libexpat

• Inspired by Jabberlang

•Faster than xmerl
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Parsed XMPP

{xmlelement, “iq”, Attrs, Subels}
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Delivering
XMPP

•Sent as an Erlang message

• handle_info() or receive block
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{packet, {xmlelement, “iq”, [{id, “101”}],

          [{xmlelement, “hello-world”, [], []}]}}
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Sending XMPP
Messages
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Nonblocking
(Fire and forget)
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Payload = {xmlelement, “hello-world”, [], []},

natter_connection:send_iq(Cn, “result”, “100”,

                          “foo@localhost”, Payload)
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Blocking
(Request & Response)
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Payload = {xmlelement, “hello-world”, [], []},

natter_connection:send_wait_iq(Cn, “set”, “100”,

                               “foo@localhost”,

                               Payload).
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•Pluggable fuzzing engine

•Reconnect and recovery

•Duplicate suppression

Other Features
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Things I
Learned
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Know What You’re
Building Before You

Build It
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When Do You Test?
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When Do You Test?

All the f**king time!
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Dialyzer is your
friend
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So are typespecs
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Processes are just
like objects
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Functions should be
short

53



Modules should do
one thing
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Hands-On Erlang
7/15 - 7/16
Chicago, IL

http://handsonerlangchicago.eventbrite.com
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