Adventures
In XMPP

Kevin A. Smith

—IL_| Hypothetical
Labs

L)
EnGIng
Yara

Vertebra

LI Hypothetical
Labs

ﬂl

Managed
Server

Managed
Server

Key/ Value

Store Workflow

Mgmt

Authentication
&
Authorization

W
W

Managed
Server

Managed
Server

Key/Value

Store Workflow

Mgmt

Authentication
&
Authorization

What Are 1Q
Packets?

e Models request/response
“conversations”

e Packet ids unique to an exchange

e Packet types: set, get, result, error

|Q Packet

<1q 1d="123” type="set”
from="foo@localhost” to="bar@localhost”>
<event 1d="98432” name="Erlang Factory” />

</1g>

W
W

Managed
Server

Managed
Server

Key/Value

Store Workflow

Mgmt

Authentication
&
Authorization

W
W

Managed
Server

Managed
Server

[wd

ERLANG

Key/Value

Store Workflow

Mgmt

[wd

ERLANG

Authentication
&
Authorization

What Are
My Options?

1. ejabberd module

Pros

e Fast
e Mostly easy

e Obvious

cons

e Wholly dependent on ejabberd
e Complicated deployment

e Lacking ejabberd docs

2. Jabberlang

Pros

e It exists
e (Mostly) works

e Removes ejabberd dependency

cons

e (Mostly) works
e Blocking send/receive

e Orphaned

3. exmpp

LI Hypothetical
&’ Labs

18

4. Write our own

Pros

e Complete control over implementation
e Implement only what we need

e Tailored to integration needs

cons

e Complete control over implementation
e Never written an XMPP client before

e [ight schedule

Introducing
natter

What It Is

e XMPP library

e Computer-to-computer via XMPP

e IQ only

What It Isn’t

e General purpose chat library
e No message support
e No rosters

e Minimal presence

natter connection

LI Hypothetical
& Labs

25

Connecting

Config = [{host, “localhost”},
{user, “foo”},
{password, “bar”},
{resource, “foo”}],

{ok, Cn} = natter_connection:start_link(Config).

27

Receiving XMPP
Messages

Exchanges

e Routes packets to interested processes

e XMPP messages are async

{ok, Cn} = natter_connection:start_link(Config),

natter_connection:register_default_exchange(self(), Cn).

30

natter_connection:register_exchange(Cn,

o A0

19,

“bar@localhost”,

self()).

31

Temporary Exchanges

e Used to route incoming responses

e Live for a single IQ “conversation”

bar@localhost

foo@localhost

—L_| Hypothetical
Labs

33

bar@localhost

foo@localhost

—L_| Hypothetical
Labs

34

bar@localhost

foo@localhost

35

bar@localhost

foo@localhost

36

XML Parsing

e Small C wrapper around libexpat
e Inspired by Jabberlang

e Faster than xmerl

Parsed XMPP

{xmlelement, “19”, Attrs, Subels}

Delivering
XMPP

e Sent as an Erlang message

e handle_info() or receive block

{packet, {xmlelement, “i1qg”, [{1d, “101”}],
[{xmlelement, “hello-world”, [], [1}]}}

40

Sending XMPP
Messages

Nonblocking
(Fire and forget)

Payload = {xmlelement, “hello-world”, [], [1},

natter_connection:send_1g(Cn, “result”, “100”,

“foo@localhost”, Payload)

43

Blocking
(Request & Response)

Payload = {xmlelement, “hello-world”, [], [1},
natter_connection:send_wait_1gq(Cn, “set”, “100”,
“foo@localhost”,

Payload).

45

Other Features

e Pluggable fuzzing engine
e Reconnect and recovery

e Duplicate suppression

Things |
Learned

Know What You’'re
Building Before You
Build It

When Do You Test?

When Do You Test?

All the **king time!

Dialyzer is your
friend

S0 are typespecs

Processes are just
like objects

Functions should be
short

Modules should do
one thing

Hands-On Erlang
//15-7/16
Chicago, IL

http://handsonerlangchicago.eventbrite.com

