
Adventures
In XMPP

Kevin A. Smith

1

2

Vertebra

3

4

Managed
Server

Managed
Server

Key/Value
Store

Authentication
&

Authorization

Workflow
Mgmt

5

Managed
Server

Managed
Server

Key/Value
Store

Authentication
&

Authorization

Workflow
Mgmt

X
M
P
P

X
M
P
P

X
M
P
P

X
M
P
P

6

What Are IQ
Packets?

•Models request/response
“conversations”

•Packet ids unique to an exchange

•Packet types: set, get, result, error

7

IQ Packet

<iq id=”123” type=”set”

 from=”foo@localhost” to=”bar@localhost”>

 <event id=”98432” name=”Erlang Factory” />

</iq>

8

Managed
Server

Managed
Server

Key/Value
Store

Authentication
&

Authorization

Workflow
Mgmt

X
M
P
P

X
M
P
P

X
M
P
P

X
M
P
P

9

Managed
Server

Managed
Server

Key/Value
Store

Authentication
&

Authorization

Workflow
Mgmt

X
M
P
P

X
M
P
P

X
M
P
P

X
M
P
P

9

What Are
My Options?

10

1. ejabberd module

11

Pros

•Fast

•Mostly easy

•Obvious

12

Cons

•Wholly dependent on ejabberd

•Complicated deployment

•Lacking ejabberd docs

13

2. Jabberlang

14

Pros

•It exists

• (Mostly) works

•Removes ejabberd dependency

15

Cons

•(Mostly) works

•Blocking send/receive

•Orphaned

16

3. exmpp

17

18

4. Write our own

19

Pros

•Complete control over implementation

• Implement only what we need

•Tailored to integration needs

20

Cons

•Complete control over implementation

•Never written an XMPP client before

•Tight schedule

21

Introducing
natter

22

What It Is

•XMPP library

•Computer-to-computer via XMPP

•IQ only

23

What It Isn’t

•General purpose chat library

•No message support

•No rosters

•Minimal presence

24

natter_connection

natter_packetizer natter_dispatcher

25

Connecting

26

Config = [{host, “localhost”},

 {user, “foo”},

 {password, “bar”},

 {resource, “foo”}],

{ok, Cn} = natter_connection:start_link(Config).

27

Receiving XMPP
Messages

28

Exchanges

•Routes packets to interested processes

•XMPP messages are async

29

{ok, Cn} = natter_connection:start_link(Config),

natter_connection:register_default_exchange(self(), Cn).

30

natter_connection:register_exchange(Cn,

 “iq”,

 “bar@localhost”,

 self()).

31

•Used to route incoming responses

•Live for a single IQ “conversation”

Temporary Exchanges

32

natter

foo@localhost

bar@localhost

#1

33

natter

foo@localhost

bar@localhost

#1

#2

34

natter

foo@localhost

bar@localhost

#1

#2

#3

35

natter

foo@localhost

bar@localhost

#1

#2

#3

#4

36

XML Parsing

•Small C wrapper around libexpat

• Inspired by Jabberlang

•Faster than xmerl

37

Parsed XMPP

{xmlelement, “iq”, Attrs, Subels}

38

Delivering
XMPP

•Sent as an Erlang message

• handle_info() or receive block

39

{packet, {xmlelement, “iq”, [{id, “101”}],

 [{xmlelement, “hello-world”, [], []}]}}

40

Sending XMPP
Messages

41

Nonblocking
(Fire and forget)

42

Payload = {xmlelement, “hello-world”, [], []},

natter_connection:send_iq(Cn, “result”, “100”,

 “foo@localhost”, Payload)

43

Blocking
(Request & Response)

44

Payload = {xmlelement, “hello-world”, [], []},

natter_connection:send_wait_iq(Cn, “set”, “100”,

 “foo@localhost”,

 Payload).

45

•Pluggable fuzzing engine

•Reconnect and recovery

•Duplicate suppression

Other Features

46

Things I
Learned

47

Know What You’re
Building Before You

Build It

48

When Do You Test?

49

When Do You Test?

All the f**king time!

49

Dialyzer is your
friend

50

So are typespecs

51

Processes are just
like objects

52

Functions should be
short

53

Modules should do
one thing

54

Hands-On Erlang
7/15 - 7/16
Chicago, IL

http://handsonerlangchicago.eventbrite.com

55

