v/

/
Mission Critical with Erlang
And QuickCheck
Quality Never Sleeps

P R

Setting the stage

o

Pop Quiz

Which of the items returned to Gordon Gecko represent
QuickCheck?

e Silk handkerchief

e Gold watch

e Ring

e Gold money clip with no money in it
e Mobile phone

o

Overview

What did we have to do?

What did QuickCheck help us with?
How is it to use Erlang?

How productive is Erlang/OTP?

e
What did we have to do?

ISI Project

e Gateway to interconnect two TETRA systems
« Migration for TETRA

e State-full protocol conversion
« Motorola Proprietary Call Control and Mobility
o ISI—ITSI InterSystem Interface open standard
« Q.SIG, HDLC, LAPD, E1
« Mobility and Resource Management

e High concurrency requirement

e High reliability — required to connect to live customer
system

P R

IS| Stack

N

I ol o
FLM RTP HDLC

LAPD

TCP UDP El

=

Motivation and Background

Working prototype to be delivered as a product
e Existing codebase created for IOP certification

Connect to live system
e Main requirement — Should not crash existing system
e Specification of legacy protocols not complete

Small team, 5 members, no dedicated test resources

ISI application Erlang + C
e Enter Property based testing and QuickCheck

M \\ - 'r’T' N i
/ S
R I

And he’s just the requirements guy ©!

“Unit test versus Property based
testing

Testing using xUnit like tools

e Setup Fixture, execute test case, Teardown Fixture

» Works well --- Used with good success before using property based
testing

« Important to have good test cases
« Test cases and scenarios easily overlooked
« Maintenance and refactoring of test cases also always required

e How is property based testing different
« Specify rules of generating a test case
« Specify pre-conditions when above rules can be valid
» Model expectations once a rule executes
o Check post-conditions once a rule executes

e \What!?! Can this even work?

. — S, Sou
Quickcheck

QuickCheck

e Generators

e Properties

e Stateless testing
Symbolic test cases

e State full testing

« State machines based
e Shrinking
e Also available for C --- Not used in our project.

10

/ |
Property based testing in IS

Unit Level

e Queue data structure

e Resource management and allocation server
Component level

e NetComm Layer

Black box — Box test level

11

Black box testing'of the ISLGW="

* Simulated sites and mobiles
e Implementation of the ZC-Site protocol
e Pseudo Air Interface protocol

Slme&{‘BGﬁ,
.r'/.#
/[nefl R B0
k/ v IR
AA A A A /

o
N/ /

{1 1]
)

— /

A
b

Black box testexample g

do register
do migrate
do_register
do_call

do answer call
do_dekey

The test cases are expressed in terms of actions taken by the
mobiles

13

Handling Concurrency in QC

In many cases the success of an operation required
several messages to occur
Enter...

e hooks
A hook spawns a listener processes for each message that
is expected

H OO k Exa m p | e Listen until

stated

message

%% M1l iz answering the call from MZ. recived
do_answer call (M1, MZ2,51) -=
#TRACE (do_answer call, [M1,HM2,51]),
Pidl = spawmm(?MIDULE ,listen for d m3g, [M1,

Pidz spawm [?MODTULE ;1isten for d m

Pids

spawm [?MODTULE ,1isten for site magq,
[l

m=g type(subscriber tx detected icp),
*TIMEOUT, sel£() 1], The Operation
mobile:answer call (M1),

Besultz = collect results([Pidl,PidE,Pid3]) ,—

pause], o Gather results
Bez=check_ results(Fesults),; from listeners
?LDG({dn_answer_call;[Hl,HE;éI;;:EEET:““‘~—-—__________

Res. Was everything

as expected?

File “iewer Collector Filter Help

et gs viewer(filter all)

W Freeze
W Hide From=To
W Hide Unknown

16

Detail Level
100
JR
go_hooks {mobile, E000001}% fmobile, E000002}) {zite, {5, 13} {zc, B}
do_register
U-LOCATIOH UPLATE PEMAHRD -
u.'nit_registratior::request_icp
‘u.nit_regis tration_jresponse_ocp
FICCEFT

do_register

do_register

do_unregister

D-LOCATION UFDATE
-

U-ITSI DETACH

3

U-LOCATION UPDATE PEMAHD
P

D-LOGATIOR UPDATE
-

o

wnit registration frequest icp

o

wnit_registration fresponse_ocp
-

FICCEFPT

unit_deregistratiop request_icp

T

wnit deregistratio

n_ack_ocp

{2, 7}

unit_registration |
-

fsite, {7,1}}

U-LOCATIOH UPDATE
-

fmobile, 3000001}

DEMAHD

request icp

nnit registration |
-

o

response_ach

D-LOCATIOH UPDATE
P

ACCEPT

£

—
QuickCheck Quality Never Sleeps

So you made a testing framework — | can do that!

Yes — every software department in our company,
including us has

Why QuickCheck
e More thinking, specify, specify, specify, less work
e Randomness

-
—
e

Visualizing auto tests

| COOKIE MONSTER |

|l

——

Visualizing auto tests

//

Erlang/OTP Quality never sleeps

Auto-enforcement of a coding standard with Erlang/OTP
Semantics of framework uncomfortably simple
Ease of Distribution
Supervisors - error handling and reliability
Common case ALWAYS works
Understanding software behavior
Resolving Issues
e Resolving issues in the field

e |ntegration issues with other vendor forces: panic, stress,
our reputation

e
Evaluation of performance

The eternal problem:
e Which approach is better?

Key problem:
e What is the size of the problem?

One of the best size measures for software:

e Function Points
« Measures input and output and treats the software as a black box

« Not widely used since it is time consuming to generate FP
estimates for a system and even harder to check how many the

final system has

p

/

Backfiring

Backfiring:

e Counting Function Points by looking at the actual code
Our approach:

e Use epp_dodger to extract incomming messages

e Use xref to extract outgoing messages

e Post-process in Excel to ensure counting the correct
messages

/ e A
Comparing with others

Function Points are often used by estimation tools

e Construx Estimate
e COCOMO II

Basic project estimation:
* |nputs:
» Function Points
e Programming language
« Type of project (Telecommunications)
e Qutput:
« Staff Months (SM) to complete the project

Erlang vs X

Java 3x (2.3-3.9)
Ct++ 4x (3.4-5.3)
C 7x (5.9-9.3)

So for a telecommunications project Erlang/OTP seems to be the right choice...

// O
Conclusions

For us Erlang solved
e Complex technical issues
e Communication in the team!
Lowering Costs
e Development
e O&M
QuickCheck
e Leverages Erlang language features
e Future of testing

