
Raghav Karol 
Motorola Solutions

Torben Hoffmann 
Motorola Solutions



Setting the stage



 Which of the items returned to Gordon Gecko represent 
QuickCheck?

 Silk handkerchief

 Gold watch

 Ring

 Gold money clip with no money in it

 Mobile phone

Pop Quiz



Overview
 What did we have to do?

 What did QuickCheck help us with?

 How is it to use Erlang?

 How productive is Erlang/OTP?



5

What did we have to do?
 ISI Project
 Gateway to interconnect two TETRA systems
 Migration for TETRA

 State-full protocol conversion
 Motorola Proprietary Call Control and Mobility

 ISI – ITSI InterSystem Interface open standard

 Q.SIG, HDLC, LAPD, E1

 Mobility and Resource Management

 High concurrency requirement

 High reliability – required to connect to live customer 
system



ISI Stack

QSIG

E1UDP

RTP

TCP

FLM

UDP

IZ

LAPD

HDLC

NETCOM

ISIISIISI

E1

QSIG

LAPD

E1



7

Motivation and Background
 Working prototype to be delivered as a product

 Existing codebase created for IOP certification

 Connect to live system
 Main requirement – Should not crash existing system
 Specification of legacy protocols not complete

 Small team, 5 members, no dedicated test resources

 ISI application Erlang + C
 Enter Property based testing and QuickCheck



September 2010

Romania

Don’t KILL the 
existing SYSTEM 

in Romania.

And he’s just the requirements guy !



9

Unit test versus Property based 
testing
 Testing using xUnit like tools 

 Setup Fixture, execute test case, Teardown Fixture
 Works well --- Used with good success before using property based 

testing

 Important to have good test cases

 Test cases and scenarios easily overlooked

 Maintenance and refactoring of test cases also always required

 How is property based testing different
 Specify rules of generating a test case

 Specify pre-conditions when above rules can be valid

 Model expectations once a rule executes 

 Check post-conditions once a rule executes

 What!?! Can this even work?



10

Quickcheck
 QuickCheck

 Generators 

 Properties

 Stateless testing

Symbolic test cases

 State full testing

 State machines based

 Shrinking

 Also available for C --- Not used in our project.



11

Property based testing in ISI
 Unit Level

 Queue data structure

 Resource management and allocation server

 Component level

 NetComm Layer

 Black box – Box test level



12

Black box testing of the ISI GW
 Simulated sites and mobiles

 Implementation of the ZC-Site protocol

 Pseudo Air Interface protocol



13

Black box test example

 The test cases are expressed in terms of actions taken by the 
mobiles



Handling Concurrency in QC
 In many cases the success of an operation required 

several messages to occur

 Enter...

 hooks 

 A hook spawns a listener processes for each message that 
is expected



Hook Example Listen until 
stated 

message 
recived

The Operation

Gather results 
from listeners

Was everything 
as expected?



16

Trace of a test case



QuickCheck Quality Never Sleeps
 So you made a testing framework – I can do that!

 Yes – every software department in our company, 
including us has

 Why QuickCheck

 More thinking, specify, specify, specify, less work

 Randomness



Visualizing auto tests



Visualizing auto tests



Erlang/OTP Quality never sleeps
 Auto-enforcement of a coding standard with Erlang/OTP

 Semantics of framework uncomfortably simple

 Ease of Distribution

 Supervisors - error handling and reliability

 Common case ALWAYS works

 Understanding software behavior

 Resolving Issues
 Resolving issues in the field

 Integration issues with other vendor forces: panic, stress, 
our reputation



Evaluation of performance
 The eternal problem:

 Which approach is better?

 Key problem:

 What is the size of the problem?

 One of the best size measures for software:

 Function Points

 Measures input and output and treats the software as a black box

 Not widely used since it is time consuming to generate FP 
estimates for a system and even harder to check how many the 
final system has



Backfiring
 Backfiring: 

 Counting Function Points by looking at the actual code

 Our approach:

 Use epp_dodger to extract incomming messages

 Use xref to extract outgoing messages

 Post-process in Excel to ensure counting the correct 
messages



Comparing with others
 Function Points are often used by estimation tools

 Construx Estimate

 COCOMO II

 Basic project estimation:

 Inputs: 

 Function Points

 Programming language

 Type of project (Telecommunications)

 Output:

 Staff Months (SM) to complete the project



Erlang vs X
Language Vs Erlang effort

Java 3x (2.3-3.9)

C++ 4x (3.4-5.3)

C 7x (5.9-9.3)

So for a telecommunications project Erlang/OTP seems to be the right choice...



Conclusions
 For us Erlang solved

 Complex technical issues

 Communication in the team!

 Lowering Costs 

 Development

 O&M

 QuickCheck

 Leverages Erlang language features

 Future of testing


