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Mission Critical with Erlang
And QuickCheck
Quality Never Sleeps
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Setting the stage
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Pop Quiz

Which of the items returned to Gordon Gecko represent
QuickCheck?

e Silk handkerchief

e Gold watch

e Ring

e Gold money clip with no money in it
e Mobile phone
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Overview

What did we have to do?

What did QuickCheck help us with?
How is it to use Erlang?

How productive is Erlang/OTP?
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What did we have to do?

ISI Project

e Gateway to interconnect two TETRA systems
« Migration for TETRA

e State-full protocol conversion
« Motorola Proprietary Call Control and Mobility
o ISI—ITSI InterSystem Interface open standard
« Q.SIG, HDLC, LAPD, E1
« Mobility and Resource Management

e High concurrency requirement

e High reliability — required to connect to live customer
system
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Motivation and Background

Working prototype to be delivered as a product
e Existing codebase created for IOP certification

Connect to live system
e Main requirement — Should not crash existing system
e Specification of legacy protocols not complete

Small team, 5 members, no dedicated test resources

ISI application Erlang + C
e Enter Property based testing and QuickCheck



M \\ - 'r’T' N i
/ S
R I

And he’s just the requirements guy ©!



“Unit test versus Property based
testing

Testing using xUnit like tools

e Setup Fixture, execute test case, Teardown Fixture

» Works well --- Used with good success before using property based
testing

« Important to have good test cases
« Test cases and scenarios easily overlooked
« Maintenance and refactoring of test cases also always required

e How is property based testing different
« Specify rules of generating a test case
« Specify pre-conditions when above rules can be valid
» Model expectations once a rule executes
o Check post-conditions once a rule executes

e \What!?! Can this even work?
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Quickcheck

QuickCheck

e Generators

e Properties

e Stateless testing
Symbolic test cases

e State full testing

« State machines based
e Shrinking
e Also available for C --- Not used in our project.
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Property based testing in IS

Unit Level

e Queue data structure

e Resource management and allocation server
Component level

e NetComm Layer

Black box — Box test level
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Black box testing'of the ISLGW="

* Simulated sites and mobiles
e Implementation of the ZC-Site protocol
e Pseudo Air Interface protocol
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Black box testexample g

do register
do migrate
do_register
do_call

do answer call
do_dekey

The test cases are expressed in terms of actions taken by the
mobiles
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Handling Concurrency in QC

In many cases the success of an operation required
several messages to occur
Enter...

e hooks
A hook spawns a listener processes for each message that
is expected



H OO k Exa m p | e Listen until

stated

message

%% M1l iz answering the call from MZ. recived
do_answer call (M1, MZ2,51) -=
#TRACE (do_answer call, [M1,HM2,51]),
Pidl = spawmm(?MIDULE ,listen for d m3g, [M1,

Pidz spawm [ ?MODTULE ;1isten for d m

Pids

spawm [ ?MODTULE ,1isten for site magq,
[l

m=g type(subscriber tx detected icp),
*TIMEOUT, sel£() 1], The Operation
mobile:answer call (M1),

Besultz = collect results([Pidl,PidE,Pid3]) ,—

pause ], o Gather results
Bez=check_ results(Fesults),; from listeners
?LDG({dn_answer_call;[Hl,HE;éI;;:EEET:““‘~—-—__________

Res. Was everything

as expected?



File “iewer Collector Filter Help

et gs viewer(filter all)

W Freeze
W Hide From=To
W Hide Unknown
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Detail Level
100
JR
go_hooks {mobile, E000001}% fmobile, E000002}) {zite, {5, 13} {zc, B}
do_register
U-LOCATIOH UPLATE PEMAHRD -
u.'nit_registratior::request_icp
‘u.nit_regis tration_jresponse_ocp
FICCEFT

do_register

do_register

do_unregister

D-LOCATION UFDATE
-

U-ITSI DETACH
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U-LOCATION UPDATE PEMAHD
P

D-LOGATIOR UPDATE
-

o

wnit registration frequest icp

o

wnit_registration fresponse_ocp
-

FICCEFPT

unit_deregistratiop request_icp

T

wnit deregistratio

n_ack_ocp

{2, 7}

unit_registration |
-

fsite, {7,1}}

U-LOCATIOH UPDATE
-

fmobile, 3000001}

DEMAHD

request icp

nnit registration |
-

o

response_ach

D-LOCATIOH UPDATE
P

ACCEPT

£




—
QuickCheck Quality Never Sleeps

So you made a testing framework — | can do that!

Yes — every software department in our company,
including us has

Why QuickCheck
e More thinking, specify, specify, specify, less work
e Randomness
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Visualizing auto tests
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Visualizing auto tests
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Erlang/OTP Quality never sleeps

Auto-enforcement of a coding standard with Erlang/OTP
Semantics of framework uncomfortably simple
Ease of Distribution
Supervisors - error handling and reliability
Common case ALWAYS works
Understanding software behavior
Resolving Issues
e Resolving issues in the field

e |ntegration issues with other vendor forces: panic, stress,
our reputation
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Evaluation of performance

The eternal problem:
e Which approach is better?

Key problem:
e What is the size of the problem?

One of the best size measures for software:

e Function Points
« Measures input and output and treats the software as a black box

« Not widely used since it is time consuming to generate FP
estimates for a system and even harder to check how many the

final system has
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Backfiring

Backfiring:

e Counting Function Points by looking at the actual code
Our approach:

e Use epp_dodger to extract incomming messages

e Use xref to extract outgoing messages

e Post-process in Excel to ensure counting the correct
messages
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Comparing with others

Function Points are often used by estimation tools

e Construx Estimate
e COCOMO II

Basic project estimation:
* |nputs:
» Function Points
e Programming language
« Type of project (Telecommunications)
e Qutput:
« Staff Months (SM) to complete the project



Erlang vs X

Java 3x (2.3-3.9)
Ct++ 4x (3.4-5.3)
C 7x (5.9-9.3)

So for a telecommunications project Erlang/OTP seems to be the right choice...
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Conclusions

For us Erlang solved
e Complex technical issues
e Communication in the team!
Lowering Costs
e Development
e O&M
QuickCheck
e Leverages Erlang language features
e Future of testing



