Mission Critical with Erlang And QuickCheck *Quality Never Sleeps*

Raghav Karol Motorola Solutions

Torben Hoffmann Motorola Solutions

Setting the stage

Pop Quiz

- Which of the items returned to Gordon Gecko represent QuickCheck?
 - Silk handkerchief
 - Gold watch
 - Ring
 - Gold money clip with no money in it
 - Mobile phone

Overview

- What did we have to do?
- What did QuickCheck help us with?
- How is it to use Erlang?
- How productive is Erlang/OTP?

What did we have to do?

ISI Project

- Gateway to interconnect two TETRA systems
 - Migration for TETRA
- State-full protocol conversion
 - Motorola Proprietary Call Control and Mobility
 - ISI ITSI InterSystem Interface open standard
 - Q.SIG, HDLC, LAPD, E1
 - Mobility and Resource Management
- High concurrency requirement
- High reliability required to connect to live customer system

ISI Stack

ISI						
FLM	RTP	IZ	QSIG	HDLC	QSIG	
		NETCOM	LAPD		LAPD	
ТСР	UDP	UDP	E1	E1	E1	

Motivation and Background

- Working prototype to be delivered as a product
 - Existing codebase created for IOP certification
- Connect to live system
 - Main requirement Should not crash existing system
 - Specification of legacy protocols not complete
- Small team, 5 members, no dedicated test resources
- ISI application Erlang + C
 - Enter Property based testing and QuickCheck

September 2010

Romania

Don't KILL the existing SYSTEM in Romania.

And he's just the requirements guy ©!

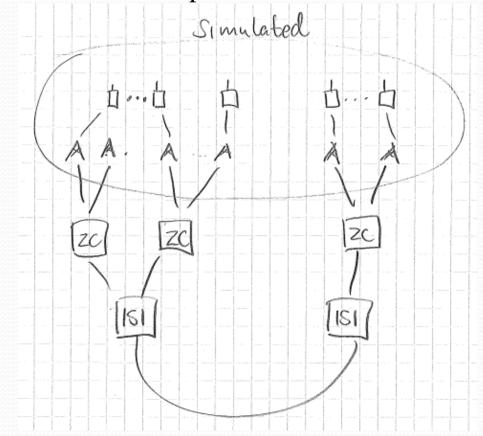
Unit test versus Property based

testing

- Testing using xUnit like tools
 - Setup Fixture, execute test case, Teardown Fixture
 - Works well --- Used with good success before using property based testing
 - Important to have good test cases
 - Test cases and scenarios easily overlooked
 - Maintenance and refactoring of test cases also always required
 - How is property based testing different
 - Specify rules of generating a test case
 - Specify pre-conditions when above rules can be valid
 - *Model* expectations once a rule executes
 - Check post-conditions once a rule executes
 - What!?! Can this even work?

Quickcheck

- QuickCheck
 - Generators
 - Properties
 - Stateless testing
 Symbolic test cases
 - State full testing
 - State machines based
 - Shrinking
 - Also available for C --- Not used in our project.

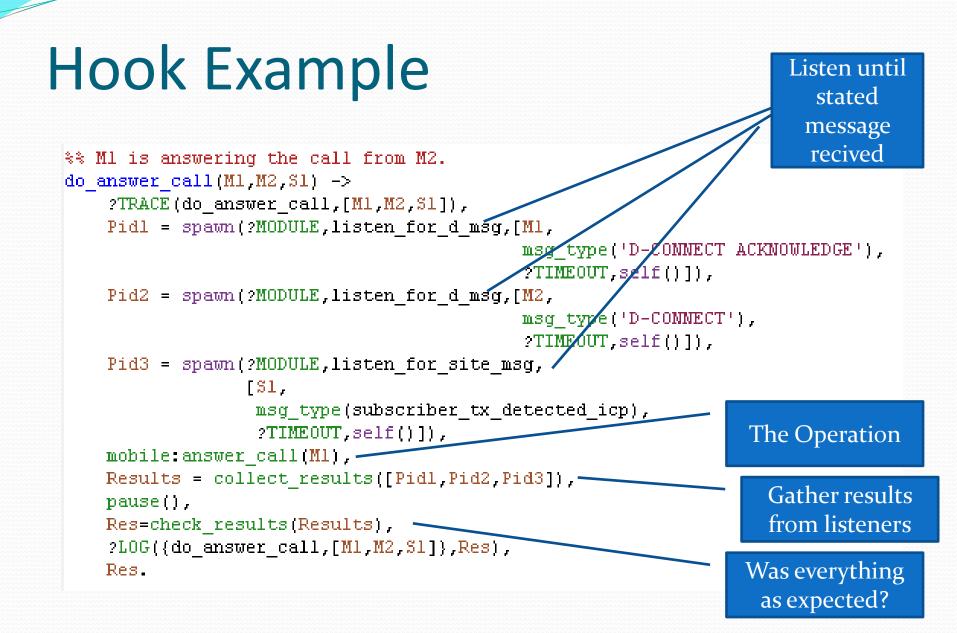

Property based testing in ISI

Unit Level

- Queue data structure
- Resource management and allocation server
- Component level
 - NetComm Layer
- Black box Box test level

Black box testing of the ISI GW

- Simulated sites and mobiles
 - Implementation of the ZC-Site protocol
 - Pseudo Air Interface protocol

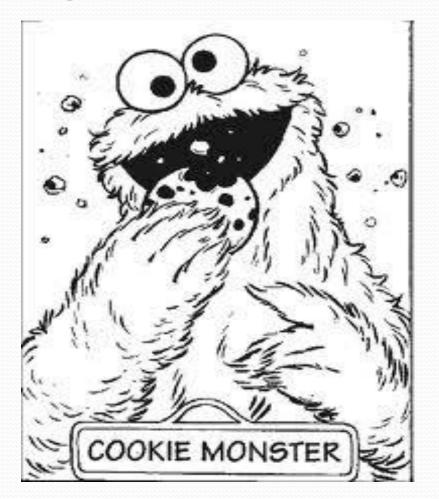

Black box test example

do register	[3000001, {7,2}]}}
do_migrate	[3000001, {5,3}, {7,2}]}}
do_register	[3000004, {7,5}]}}
do_call	<pre>[3000004,3000001,[{simplex_duplex,simplex}]]}</pre>
do_answer_call	[3000001,3000004,{5,3}]}}
do_dekey -	[3000001,3000004,{5,3}]}}

 The test cases are expressed in terms of actions taken by the mobiles

Handling Concurrency in QC

- In many cases the success of an operation required several messages to occur
- Enter...
 - hooks
- A hook spawns a listener processes for each message that is expected



et_gs_viewer (filter, all) File Viewer Collector Filter Help Detail Level 📕 Freeze 100 Hide From=To Hide Unknown qc_hooks (mobile,6000001) (mobile,6000002) (mobile, 3000001) {site, {5,1}} {zc,5} {zc,7} {site, {7,1}} do_register U-LOCATION UPDATE DEMAND unit_registration_request_icp unit_registration_response_ocp D-LOCATION UPDATE ACCEPT \mathbb{R} do_register U-LOCATION UPDATE DEMAND . unit_registration_request_icp unit_registration_response_ocp D-LOCATION UPDATE ACCEPT do_register U-LOCATION UPDATE DEMAND unit_registration_request_icp unit_registration_response_ocp D-LOCATION UPDATE ACCEPT do_unregister U-ITSI DETACH unit_deregistration_request_icp unit_deregistration_ack_ocp

QuickCheck Quality Never Sleeps

- So you made a testing framework I can do that!
- Yes every software department in our company, including us has
- Why QuickCheck
 - More thinking, specify, specify, specify, less work
 - Randomness

Visualizing auto tests

Visualizing auto tests

Erlang/OTP Quality never sleeps

- Auto-enforcement of a coding standard with Erlang/OTP
- Semantics of framework uncomfortably simple
- Ease of Distribution
- Supervisors error handling and reliability
- Common case ALWAYS works
- Understanding software behavior
- Resolving Issues
 - Resolving issues in the field
 - Integration issues with other vendor forces: panic, stress, our reputation

Evaluation of performance

- The eternal problem:
 - Which approach is better?
- Key problem:
 - What is the size of the problem?
- One of the best size measures for software:
 - Function Points
 - Measures input and output and treats the software as a black box
 - Not widely used since it is time consuming to generate FP estimates for a system and even harder to check how many the final system has

Backfiring

- Backfiring:
 - Counting Function Points by looking at the actual code
- Our approach:
 - Use epp_dodger to extract incomming messages
 - Use xref to extract outgoing messages
 - Post-process in Excel to ensure counting the correct messages

Comparing with others

- Function Points are often used by estimation tools
 - Construx Estimate
 - COCOMO II
- Basic project estimation:
 - Inputs:
 - Function Points
 - Programming language
 - Type of project (Telecommunications)
 - Output:
 - Staff Months (SM) to complete the project

Erlang vs X

Language	Vs Erlang effort
Java	3x (2.3-3.9)
C++	4x (3.4-5.3)
C	7x (5.9-9.3)

So for a telecommunications project Erlang/OTP seems to be the right choice...

Conclusions

- For us Erlang solved
 - Complex technical issues
 - Communication in the team!
- Lowering Costs
 - Development
 - 0&M
- QuickCheck
 - Leverages Erlang language features
 - Future of testing