
RWLocks in Erlang/OTP

Rickard Green
rickard@erlang.org

What is an RWLock?

›Read/Write Lock
–Write locked

› Exclusive access for one thread
–Read locked

› Multiple reader threads
› No writer threads

RWLocks Used in ERTS

›ETS tables
›Internal tables

–Atom table
–Registered names
–Distribution tables
–...

›...

What Made us Look at RWLocks?

›Testcase failed
–Pthread rwlocks on Linux with reader preferred strategy caused

starvation of writers
–Solved by using our writer preferred fallback implementation instead

›Customers complained about poor performance of the
fallback implementation

–Solved by letting them enable the reader preferred pthread rwlocks
implementation

›That is, something needed to be done...

NPTL Pthread RWLocks

›Why look at NPTL RWLocks?
–NPTL (Native POSIX Thread Library) is the thread library used on

modern Linux distros
–Linux is our most important platform

› The vast majority of our customers run on Linux
› A lot of the other (perhaps most of the other?) users run on Linux

›Strategy used during contention
–Defaults to reader preferred

› As long as the lock is read locked or readers are waiting for the lock,
writers have to wait

–Can be configured as writer preferred

› As long as the lock is write locked or writers are waiting for the lock,
readers have to wait

–Both strategies suffer from starvation issues

› Writer preferred is, however, not as problematic as reader preferred

ERTS RWLocks

›Doesn't use a writer or reader preferred strategy
›Interleaves readers and writers during contention
›Fair against readers as well as writers

ERTS RWLocks - Enqueue Writer

T1 W T3 WT2 R

T4 W
›Writers always enqueue at
the end of the queue

T0 WRWLock

ERTS RWLocks - Enqueue Reader

T1 W T3 WT2 R T4 W

T5 R
›Readers enqueue on other
readers

›At the end if no other
readers exist

T0 WRWLock

ERTS RWLocks - Queue

T1 W T3 WT2 R T4 WT5 R

T0 W

›All readers will accumulate
at one place in the queue

RWLock

ERTS RWLocks – Dequeue Writer

T3 WT2 R T4 WT5 R

›Writer at the head of the
queue takes over the lock

T1 W T0RWLock

ERTS RWLocks – Dequeue Readers

T3 W

T2 R

T4 W

T5 R

›All readers at the head of
the queue take over the
lock

T1RWLock

ERTS RWLocks - Queue

›Ensures that all waiting threads eventually will get the lock
›Able to execute readers as much as possible in parallel
›Writers wont be punished too much by readers going past
them

–Writers wont be punished at all in the case where there are as many
threads on the system as cores and each thread read locks for the
same amount of time

ERTS RWLocks - Default

›Data structure
–Integer flag field
–Queue (double linked list of waiting threads)
–Queue lock

›Uncontended case
–Atomic operations on the integer flag field

›Contended case
–Atomic operations on the integer flag field
–Locked operations on the queue

ERTS RWLocks – Flag Field (default)

Write locked

Write waiters

Read waiters

Read locked
(29-bit integer)

ERTS RWLocks – Performance

›An improvement compared to NPTL RWLocks, but
uncontended read lock case is still a bit disappointing

–Conceptually only reads of memory, however...
–Writes to the RWLock cache line are ping-ponged between processors
–In ETS also other stuff are ping-ponged

› Meta table lock cache-line
› Table reference counter cache-line

›Would be nice to avoid this cache-line ping-ponging
–Modified reader optimized RWLock implementation using reader

groups
–ETS modifications:

› Rewrite of the meta table locking to use the new reader optimized
rwlocks

› No use of table reference counter when read locking

ERTS RWLocks – Reader Optimized

›Data structure
–Integer flag field (modified)

–Queue (double linked list of waiting threads)

–Queue lock

–Reader groups (integer counters in separate cache-lines)

›Uncontended cases
–Write lock/unlock

› Atomic operations on the integer flag field (not completely true)
–Read lock/unlock

› Atomic operations in the readers groups (mostly)

›Contended case
–Atomic operations on the integer flag field
–Atomic operations in the reader groups
–Locked operations on the queue

ERTS RWLocks – Flag Field (reader optimized)

Write locked

Write waiters

Read waiters

Pending read unlock
 (27-bit integer)

Perhaps
read locked

Abort pending
read unlock

ERTS RWLocks – Reader Optimized
Integer flag field

Padding

Reader groups
Cache line
aligned

W-locked

Readers
counters

Pend R-unlock
W-waiters

R-locked?

R-waiters

›Uncontended read-lock
–Increment reader group counter
–Read flag field.

› Verify no “W-locked”, “W-waiter”,
nor “Pend R-unlock”

› Set “R-locked?” if not already set

›Uncontended read-unlock
–Decrement reader group counter
–If reader group counter reached

zero, read flag field
› Verify no “{W,R}-waiters” nor

“Pend R-unlock”

Note! We do
not reset
“R-locked?”

Abrt R-unlock

ERTS RWLocks – Reader Optimized

Padding

Reader groups
Cache line
aligned

Readers
counters

›Uncontended write-lock
–Read integer flag field.
–Verify no flags or “R-locked?” set
–If no flags are set, set “W-locked”
–If “R-locked?”, check reader groups:

› Increment “Pend R-unlock”
› Verify that all groups are zero
› Reset “R-locked?”, decrement

“Pend R-unlock”, set “W-locked”

›Uncontended write-unlock
–Reset “W-locked”
–Verify no “{W,R}-waiters”

Integer flag field

W-locked

Pend R-unlock
W-waiters

R-locked?

R-waiters

Abrt R-unlock

ERTS RWLocks – Reader Optimized

Padding

Reader groups
Cache line
aligned

Readers
counters

›Contended cases
–When a lock operation fail, the

thread continues spinning
› trying to lock actively (a few

times); then
› enqueue and spin passively (on

another structure); then

› block

–When equeueing the “{W,R}-waiters”
flag is set while holding the queue
lock; then one last effort to acquire
the lock is made

–After this the thread depends on
another thread transferring the lock
to it and waking it up

Integer flag field

W-locked

Pend R-unlock
W-waiters

R-locked?

R-waiters

Abrt R-unlock

ERTS RWLocks – Reader Optimized

Padding

Reader groups
Cache line
aligned

Readers
counters

›Contended cases (continued)
–Write locking when “R-locked?” is

set is the complicated case since it
can be interrupted by modifications
in reader groups

–A read locking thread aborts
› pending read unlock operations if

no waiters exist

› its own operation if waiters exist,
and then helps waiters out

–A read unlocking thread modifying a
reader group continues by helping
pending read unlock threads out

–Blocking write operations are
guaranteed to eventually get the
lock, since they eventually will end
up in queue if repeatedly interrupted

Integer flag field

W-locked

Pend R-unlock
W-waiters

R-locked?

R-waiters

Abrt R-unlock

Benchmarking
›The benchmark used and OTP-8925 can be found at
www.erlang.org/~rickard/euc-2010

›An ETS benchmark where 1000 processes concurrently
access a common public ets table of type set

›Accesses consists of ets:lookup() (read) and
ets:insert() (write) in different mixes

›Run with the thread_spread scheduler bind type

›R14B NPTL-rwlocks and R14B ERTS-rwlocks only differs in
rwlock implementation used

–R14B NPTL-rwlocks: ./configure force_pthread_rwlocks=yes

›When benchmarking with NPTL-rwlocks
–No read_concurrency run has been made - same as default
–No combined read_concurrency and write_concurrency has been

made - same as write_concurrency

ERTS RWLocks – ETS Options

›The default
–One table global normal (non-reader optimized) rwlock

›read_concurrency
–One table global reader optimized rwlock

›write_concurrency
–One table global reader optimized rwlock (normally read locked), and

multiple normal rwlocks protecting different parts of the table

›read_concurrency and write_concurrency combined
–One table global reader optimized rwlock, and multiple reader

optimized rwlocks protecting different parts of the table

ETS Table with write_concurrency
Option (before R14B)

RWLock

RWLock RWLock RWLock RWLock

...
RWLock

ETS Table with write_concurrency
Option (R14B)

Reader
optimized
RWLock

RWLock RWLock RWLock RWLock

...
RWLock

ETS Table with write_concurrency and
read_concurrency Options (R14B)

Reader
optimized
RWLock ...

Reader
optimized
RWLock

Reader
optimized
RWLock

Reader
optimized
RWLock

Reader
optimized
RWLock

Reader
optimized
RWLock

Benchmarking

›Machine A
–SLES 10.2
–Kernel 2.6.16.60-0.39.3-smp
–NPTL 2.4
–x86_64
–2x Intel Xeon L5430 @ 2.66

GHz

›Machine B
–Ubuntu 9.10
–Kernel 2.6.31-22-server
–NPTL 2.10.1
–x86_64
–2x Intel Xeon <unknown id> @

2.8 GHz

1> erlang:system_info(cpu_topology).
[{processor,[{core,{logical,0}},
 {core,{logical,4}},
 {core,{logical,2}},
 {core,{logical,6}}]},
 {processor,[{core,{logical,1}},
 {core,{logical,5}},
 {core,{logical,3}},
 {core,{logical,7}}]}]

1> erlang:system_info(cpu_topology).
[{processor,[{thread,{logical,0}},
 {thread,{logical,2}}]},
 {processor,[{thread,{logical,1}},
 {thread,{logical,3}}]}]

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine A

Benchmark Results – Machine B

Benchmark Results – Machine B

Benchmark Results – Machine B

Benchmark Results – Machine B

Benchmark Results – Machine B

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

