
PULSE Tutorial
Hans Svensson and Michał Pałka

1.

"We know there is a lurking bug
somewhere in the dets code. We have
got 'bad object' and 'premature eof'
every other month the last year. We
have not been able to track the bug
down since the dets files is repaired
automatically next time it is opened.“

Tobbe Törnqvist, Klarna, 2007

Cost of bug fixing

Slide: Advanced OOP and Design Patterns, Stefan Priebsch

Race conditions

•  Many found late in the process (system testing,
production)

•  Often result of design errors
•  Very expensive to fix

2.

Introducing example

•  Very often we write code like:

or

•  Each process_item(I) is independent
•  Our new 53-core machine has just arrived
•  Natural place to parallelize!

Items = gather_items(),
lists:foreach(fun(I) -> process_item(I) end, Items)

Items = gather_items(),
Res = lists:map(fun(I) -> process_item(I) end, Items)

Introducing example

•  Replace map with parallel map (pmap):

•  Unfortunately there is no standard parallel map
in Erlang

•  How about implementing one!?

Items = gather_items(),
Res = pmap(fun(I) -> process_item(I) end, Items)

Avoid the cost of bugs

Slide: Advanced OOP and Design Patterns, Stefan Priebsch

We want to find the
bugs early here!

Property Driven Development

•  First write the property!

-include_lib(“eqc/include/eqc.hrl”).
prop_pmap() ->
 ?FORALL({Fun,Items}, {function1(nat()),list(nat())},
 begin

 end).

 Res = lists:map(Fun,Items),
 PRes = pmap:pmap(Fun,Items),
 Res == PRes

Generates a random
function returning
natural numbers!

Apply normal map

Apply parallel map

Compare the results

-module(pmap).

-export([pmap/2]).

pmap(F,Ls) ->
 Self = self(),
 [spawn(fun() -> Self ! F(L) end) || L <- Ls],
 [receive Res -> Res end || _ <- Ls].

Implementing pmap

•  First attempt

Testing with QuickCheck

2>eqc:quickcheck(pmap_eqc:prop_pmap()).

...

...
OK, passed 100 tests

true

Good, but let’s run some more tests…
3>eqc:quickcheck(eqc:numtests(10000,pmap_eqc:prop_pmap())).

...

...

...

..

OK, passed 10000 tests

true

Testing with QuickCheck

•  Perfect! Move on to next problem…
•  Or wait a second, was our testing really

thorough?

•  A concurrent implementation on a slow single-
core laptop!

•  Not good enough!

Many race conditions show up only in
production; they must be hard to test!

Testing with QuickCheck, 2nd try…

Erlang R13B02 (erts-5.7.2) … [smp:2:2]

…

5>eqc:quickcheck(pmap_eqc:prop_pmap()).
...
...

OK, passed 100 tests

true

Still passes, maybe it is actually correct…
8>eqc:quickcheck(eqc:numtests(10000,pmap_eqc:prop_pmap())).
..

...... Failed! After 841 tests.
{#Fun<eqc_gen.101.34507915>,[30,1,22,3,18,25,22]}

false

Ouch!

-include_lib(“eqc/include/eqc.hrl”).
prop_pmap() ->
 ?FORALL({Fun,Items}, {function1(nat()),nat()},
 begin

 Res = lists:map(Fun,Items),
 PRes = pmap:pmap(Fun,Items),
 Res == PRes

 end).

Property Driven Development

•  We need more information!
?WHENFAIL – to run code when a property fail
•  We want to see the values of Res and PRes.

-include_lib(“eqc/include/eqc.hrl”).
prop_pmap() ->
 ?FORALL({Fun,Items}, {function1(nat()),nat()},
 begin

 Res = lists:map(Fun,Items),
 PRes = pmap:pmap(Fun,Items),
 ?WHENFAIL(
 io:format(“~p /= ~p\n”,[Res,PRes]),
 Res == PRes)

 end).

Testing with QuickCheck, 2nd try…

8>eqc:quickcheck(eqc:numtests(1000,pmap_eqc:prop_pmap())).
..

...... Failed! After 710 tests.
{#Fun<eqc_gen.101.41379873>,[11,19,14,14,6,32,33,18,26,7]}

[30,13,5,5,0,21,24,29,4,20] /= [30,13,5,5,0,21,24,29,20,4]

Shrinking.(1 times)

{#Fun<eqc_gen.101.41379873>,[11,19,14,14,6,32,33,18]}

[30,13,5,5,0,21,24,29] /= [30,29,24,13,21,5,0,5]

false

Observations

•  Switching to multi-core (or enabling SMP) makes
concurrency bugs more likely to manifest

•  We had to run quite a few tests

•  Shrinking didn’t work (very well)
–  A small counterexample is often very valuable
–  Shrinking a counterexample is done stepwise
–  Counterexample that ‘happens’ to fail will not shrink well

Erlang scheduling

•  The Erlang scheduler is too deterministic
–  Small tests
–  Low load on system
–  Deterministic even in multi-core systems
–  Large tests are needed to provoke race conditions
–  Many race conditions may not show up until you

deploy your system
•  With randomized scheduling

–  Small tests are more likely to provoke race conditions
–  Find concurrency bugs early in development process

3.

PULSE to the rescue

•  PULSE to the rescue
–  P – ProTest
–  U – User
–  L – Level
–  S – Scheduler
–  E – for Erlang

•  PULSE is non-deterministic (random scheduling)
•  PULSE can re-run a schedule (repeatable tests)

How PULSE works

•  Controls the concurrency
–  Only one process is executing at a time

•  Records all concurrency events
–  Message sending
–  Process spawning
–  Etc…

•  PULSE can switch to executing another process
(simulating context switch) at any time

•  We make sure that unlikely scenarios get tested

How to use PULSE

•  pulse_instrument:
–  Instrumentation of the code at compile time

•  Implemented as parse_transform compiler option

•  Example:
 c(example,[{parse_transform,pulse_instrument}]).

•  Calls to spawn, link as well as statements ! and
receive, etc are replaced by calls handled by
PULSE

How to use PULSE

•  Running instrumented code:

Application PULSE must be running: pulse:start().

The PULSE application keeps state: last used schedule,
random seed, etc, and gives access to event handlers for
different kind of output.

5> c(pmap,[{parse_transform,pulse_instrument}]).

{ok,pmap}

6> pulse:run(fun() ->
 pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

** exception exit: {application,pulse_not_running}

 in function pulse:spawn/2

...

How to use PULSE

8> pulse:start().
Starting eqc version 1.18 …
9> pulse:run(fun() ->
 pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]
scheduling started
root spawns pmap <0.234.0>
root spawns pmap1 <0.235.0>
root blocks
pmap sends 3 to root
pmap terminated normally
root receives 3
...
return value [3,4]
scheduling finished
10>

?PULSE macro

QuickCheck uses ?PULSE macro:

?PULSE(
 <Pattern bound to result of E>,
 <Expression E to run in PULSE>,
 <Property using result of E>
)

•  Normal compilation:
 Run code normally

•  Compilation with pulse_instrument, PULSE running:
 Run code with PULSE scheduler

How to use PULSE with QuickCheck

•  Update property!
-include_lib(“eqc/include/eqc.hrl”).
prop_pmap() ->
 ?FORALL({Fun,Items}, {function1(nat()),nat()},
 begin

 Res = lists:map(Fun,Items),
 PRes = pmap:pmap(Fun,Items),
 ?WHENFAIL(
 io:format(“~p /= ~p\n”,[Res,PRes]),
 Res == PRes)

 end).

This is what we want
to run in PULSE

How to use PULSE with QuickCheck

•  Update property!
-include_lib(“eqc/include/eqc.hrl”).
-include_lib(“pulse/include/pulse.hrl”).

prop_pmap() ->
 ?FORALL({Fun,Items}, {function1(nat()),nat()},
 begin

 Res = lists:map(Fun,Items),
 ?PULSE(
 PRes,
 pmap:pmap(Fun,Items),
 ?WHENFAIL(
 io:format(“~p /= ~p\n”,[Res,PRes]),
 Res == PRes))
 end).

PULSE macro

PULSE definitions

-include_lib(“eqc/include/eqc.hrl”).
prop_pmap() ->
 ?FORALL({Fun,Items}, {function1(nat()),nat()},
 begin

 Res = lists:map(Fun,Items),
 PRes = pmap:pmap(Fun,Items),
 ?WHENFAIL(
 io:format(“~p /= ~p\n”,[Res,PRes]),
 Res == PRes)

 end).

PRes = pmap:pmap(Fun,Items)

Verbosity in PULSE

•  Don’t forget the verbosity:
•  pulse:verbose/1.

24> pulse:verbose([]).
ok
25> pulse:run(fun() ->
 pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]
26> pulse:verbose([all]).
ok
27> pulse:run(fun() ->
 pmap:pmap(fun(X) -> X + 2 end,[1,2]) end).

[3,4]
scheduling started
root spawns pmap <0.234.0>
root spawns pmap1 <0.235.0>
...

Verbosity in PULSE

•  Verbosity options:
•  all – All verbosity flags
•  send - Show sending of messages
•  ‘receive‘- Show delivery and receiving of messages
•  procs – Show process events (spawn, link, etc.)
•  side_effect – Show (user defined) side effects

•  Options are similar to trace patterns

How to use PULSE with QuickCheck

32> pulse:verbose([]).
ok
33> eqc:quickcheck(pmap_eqc:prop_pmap()).
............Failed! After 23 tests.
{#Fun<eqc_gen.101.34457915>,[0,2,0]}
{29191,1432,12821}
[3,1,1] /= [1,3,1]
Shrinking...(3 times)
{#Fun<eqc_gen.101.34457915>,[0,1]}
{29191,1432,12821}
[3,0] /= [0,3]
false

•  Fewer test cases needed
•  Shrinking works (for this example)

Understanding the counterexample

•  What is the error?
•  We can use pulse:rerun_counterexample/2 to re-run the

counterexample with more verbosity
 - Gets the last counterexample from eqc:counterexample/0

 - Uses eqc:check/2 to re-run the property

35> pulse:rerun_counterexample([all],pmap_eqc:prop_pmap()).
scheduling started
root spawns pmap <0.244.0>
root spawns pmap1 <0.245.0>
root blocks
pmap sends 3 to root
pmap terminated normal
pmap1 sends 0 to root
pmap1 terminated normal
pmap1 delivers 0 to root
root receives 0
root blocks
pmap delivers 3 to root
root receives 3
return value [0,3]
scheduling finished
Failed!
{#Fun<eqc_gen.101.34457915>,[0,1]}
{29197,1532,821}
[3,0] /= [0,3]
false
36>

Visualization

•  Another way of understanding an error
•  We can visualize the schedule to easier understand it!

•  Requires pulse_event_graph to be added as event
handler: pulse_event_graph:start().
36> pulse_event_graph:start([]).
ok
37> pulse:rerun_counterexample([],pmap_eqc:prop_pmap()).
pulse_event_graph set verbose to []
pulse_event_terminal set verbose to []
Failed!
...

•  Every scheduled run now creates a graph.dot file!

Visualization

Requires GraphViz to be installed. In particular the program dot
 http://www.graphviz.org/

Work in progress,
the only thing seen
is the order of the

messages.

pmap 2nd attempt

•  We need to ensure the order of the results:
-module(pmap).

-export([pmap/2]).

pmap(F,Ls) ->
 Self = self(),
 Pids = [spawn(fun() -> Self ! {self(),F(L)} end)

 || L <- Ls],
 [receive {Pid,Res} -> Res end

 || Pid <- Pids].

Tag the messages
with the Pid of the

worker process

Use selective
receive to fetch the

results in order

-module(pmap).

-export([pmap/2]).

pmap(F,Ls) ->
 Self = self(),
 [spawn(fun() -> Self ! F(L) end) || L <- Ls],
 [receive Res -> Res end || _ <- Ls].

Testing the new implementation

45>eqc:quickcheck(pmap_eqc:prop_pmap()).

...

...
OK, passed 100 tests

true

Good, but again, let’s run some more tests…
48>eqc:quickcheck(eqc:numtests(10000,pmap_eqc:prop_pmap())).

..

..

...

..

OK, passed 10000 tests

true

Done! Not quite; our implementation doesn’t handle errors...

Visualization – a correct run

The messages are
delivered in the
wrong order, but

consumed in the
right order

Short break!

Try it yourselves!

Next: User defined side effects

4.

Side effects

•  Concurrency errors can be caused by modules interacting
with other modules

•  Example: writefile

prop_writefile() ->

 ?FORALL({Text1,Text2},{string(),string()},

 begin
 ok = file:write_file(?TESTFILE,Text1),

 ok = file:write_file(?TESTFILE,Text2),

 {ok,Bin} = file:read_file(?TESTFILE),

 binary_to_list(Bin) == Text2

 end).
Sequential writes are
obviously safe. How about
parallel file writing?

Side effects

•  With a simple ?PAR macro we parallelize the writes
-define(PAR(E1,E2),
 begin
 spawn(fun() -> E1 end),
 spawn(fun() -> E2 end)
 end).

prop_writefile() ->

 ?FORALL({Text1,Text2},{string(),string()},

 begin

 ?PAR(file:write_file(?TESTFILE,Text1),

 file:write_file(?TESTFILE,Text2)),

 {ok,Bin} = file:read_file(?TESTFILE),
 Res = binary_to_list(Bin),

 Res == Text1 orelse Res == Text2

 end).

Write files in
parallel

The result should
be either of the

strings

...

 {ok,Bin} = file:read_file(?TESTFILE),

 Res = binary_to_list(Bin),
 ?WHENFAIL(

 io:format(“Res: ~\n”,[Res]),

 Res == Text1 orelse Res == Text2)

 end).

Example: write_file

2> eqc:quickcheck(writefile:prop_writefile()).

.Failed! After 2 tests.

{“e”,”q”}
false Strange! Fails almost

immediately, on very
short strings. •  Add some more output:

Example: write_file – more output

7> eqc:quickcheck(writefile:prop_writefile()).

Failed! After 1 tests.

{“f”,”e”}
Res: “z”

false
???

Where does “z” come
from? Maybe we should

try PULSE?

Example: write_file – PULSE

•  Add ?PULSE to the property:

prop_writefile() ->

 ?FORALL({Text1,Text2},{string(),string()},

 ?PULSE(
 Res,

 begin

 ?PAR(...),

 {ok,Bin} = file:read_file(?TESTFILE),

 binary_to_list(Bin),

 end,

 ?WHENFAIL(io:format(“Res: ~\n”,[Res]),

 Res == Text1 orelse Res == Text2))).

Example: write_file – more output

9> pulse:start(),pulse:verbose([all]).

...

10> eqc:quickcheck(writefile:prop_writefile()).
scheduling started

root spawns ‘prop_writefile.Res’ <0.1528.0>

root spawns ‘prop_writefile.Res1’ <0.1529.0>

return value “k”

‘prop_writefile.Res1’ terminated normal

‘prop_writefile.Res’ terminated normal

scheduling finished

Failed! After 1 tests.

{“f”,”e”}

{8534,66433,27482}

Res: “k”

false

Doesn’t tell us very
much more, we

know that write_file
is a side-effect, but
PULSE does not...

Example: write_file – PULSE behavior

11> pulse:rerun_counterexample([all],

 writefile:prop_writefile()).

scheduling started
...

OK, passed the test.

true ???
Now the test passed!

•  Important PULSE fact:
 PULSE only controls the instrumented program and

not the whole environment!

•  PULSE cannot re-run a schedule (faithfully) when the
environment has changed (new files are written etc...)

User defined side-effects

•  We want PULSE to show an event when we
perform a file operation.

All calls to module file are considered side effects:
c(writefile,

 [{parse_transform,pulse_instrument},
 {pulse_side_effect,[{file,'_','_'}]}]).

Matching module, function, arguments

Example: write_file – more output

13> eqc:quickcheck(writefile:prop_writefile()).

scheduling started

root spawns ‘prop_writefile.Res’ <0.1832.0>
root spawns ‘prop_writefile.Res1’ <0.1833.0>

root yields

‘prop_writefile.Res1’ yields

‘prop_writefile.Res’ yields

root continues

root side-effect file:read_file(

 “D:/Tmp/testfile.txt”) result in {ok,<<“x”>>}

return value “x”

‘prop_writefile.Res1’ continues

‘prop_writefile.Res1’ side-effect file:write_file(

 “D:/Tmp/testfile.txt”) result in ok

...

Aha! We are reading
the file before either of
the writers has written

anything!

Writefile – visualization

Dashed lines
indicates ‘happens-

before’ causal
relations

Solution: synchronize

•  PAR spawns two processes, but a third process is also
running in parallel to them!

•  Very common error
•  Solution: Synchronize

-define(PAR(E1,E2),

 begin

 Self = self(),
 spawn(fun() -> E1, Self!done end),

 spawn(fun() -> E2, Self!done end),

 receive done ->

 receive done -> ok end

 end

 end).

Exercise:
Master-slave workers

Master-slave worker example

•  N workers: one master and N-1 slaves
•  Process registry is used to identify the master

•  Functionality in: master.erl
•  Test case in: master_eqc.erl

•  There is a race condition in the code, which is
hard to provoke with a test case

•  Hint: use pulse_side_effect

5.

PULSE – summary

•  Race conditions can be very difficult to find in
early testing

•  Bugs found late are very expensive to fix
•  PULSE can be used to find hard-to-find race

conditions that would otherwise be hidden until
very late

•  PULSE is most useful for small but critical
modules of an application (steep learning curve)

PULSE – extras and future

•  Two useful tricks
•  Performance with PULSE
•  A success story
•  Availability of PULSE
•  The future of PULSE

Tips and Tricks

•  What to do when shrinking doesn’t work?
•  Mostly important in larger more complex

examples
•  Even with pulse the counterexamples can be

large

•  Visualization is also useful, but graphs quickly get
quite large

prop_X() ->

 ?ALWAYS(Tries,

 <Property>

)

).

Tips and Tricks

•  Idea 1: ?ALWAYS(N,Property)-macro tries the
property N times, and fails if any of the tries fails

•  Idea 2: Try the property many times while
shrinking to increase the chance of hitting the bug

Tries will be 1 during
normal testing and 10

during shrinking

prop_X() ->

 ?LET(Tries, ?SHRINK(1,[10]),

 ...
 ?ALWAYS(Tries,

 ...

)

 ...

).

PULSE performance

•  Comparing performance
•  Used parallel map as benchmark

–  Short computations: fib(N) where N = 10-15
–  Long computations: fib(N) where N = 30-35

•  Single core:
–  With longer computations PULSE is faster!
–  With short computations, communication dominates

and PULSE is (much) slower
•  Multi-core:

–  PULSE is always slower, since it only uses one of the
cores.

PULSE performance

•  Performance is very application dependent
•  Communication bound applications could be

x100 slower.
•  A ‘normal’ distributed application is likely to be

x10 slower
–  Due to not using multi-core
–  and slower communication

A success story – PULSE used for proc_reg

•  Real industrial example
•  An optimized process registry
•  Concurrency errors found by stress testing in

2006 (very large counterexamples)
•  Nobody was able to track down the errors, so

the component was shelved
•  With PULSE we got shorter counterexamples
•  With PULSE and the visualizer we could explain

the error
•  Described in paper at ICFP 2009

PULSE availability

•  Two versions:
–  Open source version (BSD license)

•  Developed at Chalmers
•  Work in progress (ProTest)
•  Not very user-friendly
•  No public release yet

–  Commercial version
•  Available as part of Quviq QuickCheck
•  Package PULSE in application
•  Integrates QuickCheck and PULSE

ProTest – PULSE future plans

•  Missing features (multi-node support etc)
•  Improve shrinking of traces
•  Re-write the core for a more modular design

(already started)
•  Support for testing timing dependent code

(receive after X -> ...)
•  Package and release open source version

Thank you!

