
Testing database applications with QuickCheck
— Tutorial —

Laura M. Castro

Universidade da Coruña (Spain)

Stockholm, 15th November 2010

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 1 / 23

Outline

1 What is a database application?

2 Why do DB applications require special testing?

3 The theory: how to test a database application with QuickCheck

4 The practise: testing a simple e-shop

5 Summing up

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 2 / 23

What is a database application?

A database or data-intensive application is a software system which:

makes intensive use of great amounts of data,

relies on external storage sources for persistence (e.g., a database).

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3 / 23

What is a database application?

A database or data-intensive application is a software system which:

makes intensive use of great amounts of data,

relies on external storage sources for persistence (e.g., a database).

online
shop

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3 / 23

What is a database application?

A database or data-intensive application is a software system which:

makes intensive use of great amounts of data,

relies on external storage sources for persistence (e.g., a database).

online
shop

task
flow

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3 / 23

What is a database application?

A database or data-intensive application is a software system which:

makes intensive use of great amounts of data,

relies on external storage sources for persistence (e.g., a database).

online
shop

task
flow

bank
app

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3 / 23

Why do DB applications require special testing?

Database or data-intensive applications are software systems which:

impose complex constraints on the data they handle,

their correct operation depends on their enforcement.

These constraints are usually referred to as business rules.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 4 / 23

Why do DB applications require special testing?

Database or data-intensive applications are software systems which:

impose complex constraints on the data they handle,

their correct operation depends on their enforcement.

These constraints are usually referred to as business rules.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 4 / 23

Why do DB applications require special testing?

Database or data-intensive applications are software systems which:

impose complex constraints on the data they handle,

their correct operation depends on their enforcement.

These constraints are usually referred to as business rules.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 4 / 23

Business Rules
What are they?

“Statements that define or constrain some aspect of a business (. . .)
intended to assert business structure or to control or influence
behavior”
(B.R. Group, Defining Business Rules – What are they really?)

“Definitions of how the business should be carried out and
constraints on the business” (I. Sommerville, Software Engineering)

“Software is the realization of business rules”
(R.S. Pressman, Software Engineering – A practitioner’s approach)

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 5 / 23

Business Rules
Where are they?

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 6 / 23

Business Rules
Where are they?

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

only basic
constraints

(E/R)

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 6 / 23

Business Rules
Where are they?

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

only basic
constraints

(E/R)

no
constraints

at all

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 6 / 23

Business Rules
Where are they?

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 6 / 23

Business Rules
When do we test them?

Since business rules are not located in a specific unit or component,

they are not covered by unit testing.

Since business rules dictate data-related constraints,

they are not the scope of integration testing.

Since business rules need to be respected at all times,

they are not considered when testing the GUI.

Business rules must be tested as part of system testing.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7 / 23

Business Rules
When do we test them?

Since business rules are not located in a specific unit or component,

they are not covered by unit testing.

Since business rules dictate data-related constraints,

they are not the scope of integration testing.

Since business rules need to be respected at all times,

they are not considered when testing the GUI.

Business rules must be tested as part of system testing.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7 / 23

Business Rules
When do we test them?

Since business rules are not located in a specific unit or component,

they are not covered by unit testing.

Since business rules dictate data-related constraints,

they are not the scope of integration testing.

Since business rules need to be respected at all times,

they are not considered when testing the GUI.

Business rules must be tested as part of system testing.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7 / 23

Business Rules
When do we test them?

Since business rules are not located in a specific unit or component,

they are not covered by unit testing.

Since business rules dictate data-related constraints,

they are not the scope of integration testing.

Since business rules need to be respected at all times,

they are not considered when testing the GUI.

Business rules must be tested as part of system testing.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7 / 23

Why do DB applications require special testing?
Because of Business Rules

Therefore, database or data-intensive applications:

include business rules that put constraints on the data they handle,

business rules must be enforced by the system at all times,

location of the business rules is unclear.

In this tutorial, we will present a methodology to

test business rules at system testing level.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 8 / 23

Why do DB applications require special testing?
Because of Business Rules

Therefore, database or data-intensive applications:

include business rules that put constraints on the data they handle,

business rules must be enforced by the system at all times,

location of the business rules is unclear.

In this tutorial, we will present a methodology to

test business rules at system testing level.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 8 / 23

The theory
How to test business rules with QuickCheck

To test that a data-intensive application complies with the data constraints

imposed by its business rules at all times, we use QuickCheck:

an automatic testing tool,

generates and runs random sequences of test cases,

when an error is found, test sequence is shrunk to return a minimal

test case.

In the rest of the tutorial we assume familiarity with Quviq QuickCheck testing
tool. We will present the basics of how QuickCheck state machine library
works, but explaining these concepts is not the purpose of this specific tutorial.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 9 / 23

The theory
How to test business rules with QuickCheck

To test that a data-intensive application complies with the data constraints

imposed by its business rules at all times, we use QuickCheck:

an automatic testing tool,

generates and runs random sequences of test cases,

when an error is found, test sequence is shrunk to return a minimal

test case.

In the rest of the tutorial we assume familiarity with Quviq QuickCheck testing
tool. We will present the basics of how QuickCheck state machine library
works, but explaining these concepts is not the purpose of this specific tutorial.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 9 / 23

The theory
How to test business rules with QuickCheck

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 10 / 23

The theory
How to test business rules with QuickCheck

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

BR
enforced
here

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 10 / 23

The theory
How to test business rules with QuickCheck

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

APPLICATION INTERFACE

or here
data will be
"corrupted"

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 10 / 23

The theory
How to test business rules with QuickCheck

STORAGE ACCESS

APPLICATION BUSINESS LOGIC

QUICKCHECK

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 10 / 23

The theory
QuickCheck state machine library

In particular, we use QuickCheck state machine library:

mechanism to easily implement a testing state machine

(library callbacks),

the testing state machine generates and runs test sequences,

tests are sequences of calls to the functionalities under test.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 11 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
How are test sequences generated?

test sequence
length reached?

SUCCESS

YES

NO

select
operation

preconditions hold?
FALSE

TRUE

TRUE FALSE

ERROR

postconditions hold?

execute
operation

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 12 / 23

The theory
QuickCheck statem machine skeleton

-module(test_eqc).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_statem.hrl").

-compile(export_all).

-record(state,{useful_info}).

%% Initialize the state
initial_state() ->

#state{useful_info = []}.

%% Command generator, S is the state
command(S) ->

oneof([PUBLIC API OPERATIONS]).

%% Next state transformation, S is the current state
next_state(S,_V,{call,_,_,_}) ->

S.

%% Precondition, checked before command is added to the command sequence
precondition(_S,{call,_,_,_}) ->

true.

%% Postcondition, checked after command has been evaluated
%% OBS: S is the state before next_state(S,_,<command>)
postcondition(_S,{call,_,_,_},_Res) ->

true.

prop_statem() ->
?FORALL(Cmds,commands(?MODULE),

begin
{H,S,Res} = run_commands(?MODULE,Cmds),
?WHENFAIL(

io:format("History: ~p~nState: ~p~nRes: ~p~n",[H,S,Res]),
Res == ok)

end).

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 13 / 23

The practise
Testing a simple e-shop

Very simple online shop application:

Register new customer

Add new product to shop

Add product to cart

Remove product from cart

Place order

Cancel order

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 14 / 23

The practise
UML model: main components

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 15 / 23

The practise
E/R model: basic data constraints

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 16 / 23

The practise
Golden business rule

Example of business rule (complex data constraint).

Business rules may be implemented in different ways. . .
. . . but we only care they actually are.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17 / 23

The practise
Golden business rule

Example of business rule (complex data constraint).

Business rule
Only golden customers may
purchase golden products.

Business rules may be implemented in different ways. . .
. . . but we only care they actually are.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17 / 23

The practise
Golden business rule

Example of business rule (complex data constraint).

Business rule
Only golden customers may
purchase golden products.

Business rules may be implemented in different ways. . .

. . . but we only care they actually are.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17 / 23

The practise
Golden business rule

Example of business rule (complex data constraint).

Business rule
Only golden customers may
purchase golden products.

Business rules may be implemented in different ways. . .
. . . but we only care they actually are.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17 / 23

The practise
Hands-on time!

1 Explore the simple e-shop implementation given,

2 inspect the simpleshop_eqc module stub,

3 find out if business rule is respected!

(and if not, fix it!!)

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 18 / 23

The practise
Hands-on time!

1 Explore the simple e-shop implementation given,

2 inspect the simpleshop_eqc module stub,

3 find out if business rule is respected! (and if not, fix it!!)

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 18 / 23

The practise
Outcome: QuickCheck statem machine skeleton for BR testing (I)

-module(testbr_eqc).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_statem.hrl").

-compile(export_all).

-record(state, {useful_info}).

initial_state() ->
#state{useful_info = []}.

command(S) ->
oneof([PUBLIC API OPERATIONS (LOCAL WRAPPERS)]).

next_state(S,_V,{call,_,_,_}) ->
S.

precondition(_S,{call,_,_,_}) ->
true.

postcondition(_S,{call,_,_,_},_Res) ->
true.

prop_brstatem() ->
?FORALL(Cmds, commands(?MODULE),

begin
true = check_data_invariant(),
{H, S, Res} = run_commands(?MODULE, Cmds),
Invariant = check_data_invariant(),
clean_up(S),
?WHENFAIL(io:format("H ~p~nS ~p~nRes ~p~n", [H, S, Res]),

conjunction([{test_execution, Res == ok},
{business_rules, Invariant}]))

end).

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 19 / 23

The practise
Outcome: QuickCheck statem machine skeleton for BR testing (& II)

<command>_local(Args) ->
Expected = expected_result(<command>, Args),
Obtained = <command>(Args),
match(Expected, Obtained).

check_data_invariant() ->
IMPLEMENTATION OF BUSINESS RULES AS STORAGE QUERIES.

expected_result(<command>, Args) ->
QUERY STORAGE TO GUESS RESULT.

clean_up(S) ->
EMPTY STATE BETWEEN TEST SEQUENCES.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 20 / 23

Summing up
Testing of data-intensive applications

When testing database or data-intensive applications,

special attention must be paid to data-consistency business rules,

data-consistency constraints cannot always be trusted to the data

storage and can never be trusted to the user interface,

business rules implementation may be spread over the system,

system testing is the most adequate level to test for business rules

compliance.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 21 / 23

Summing up
Methodology to test BR using QuickCheck

1 Use a QuickCheck state machine,

2 keep state minimum,

3 add public API operations as commands/transitions,

I use local wrappers to predict the result according to existing data,

I and then match with the result actually obtained

4 specify pre- and postconditions as true,

5 formulate business rules (invariants) as queries to data storage,

6 write property checking invariants after each test sequence.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 22 / 23

Summing up
I hope this tutorial has been useful!

Attendants ! thanks

Get help subscribing to: quickcheck-questions@quviq.com
Material for images came from: openclipart.org, kde-look.org

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 23 / 23

	What is a database application?
	Why do DB applications require special testing?
	Business Rules

	The theory: how to test a database application with QuickCheck
	The practise: testing a simple e-shop
	Summing up

