
Erlang Gives You
Superpowers!

Jack Moffitt
jack@metajack.im

@metajack
http://metajack.im

The Many Powers of

Erlang

* unlike most super powers, no spider bites, radiation exposure,
family misfortune, or alien birth required
* like any other super thing, there are weaknesses

Pattern Matching

{ok, Power} = grant_superpower().

handle_call({submit_word, Word},
	 	 	 	 {Player, _},
	 	 	 	 State = #game{
	 	 	 	 	 words=Words,
	 	 	 	 	 scores=[Score1, Score2],
	 	 	 	 	 player_data=[
	 	 	 	 	 #player{rating=Rating1} = PlayerData1,
	 	 	 	 	 #player{rating=Rating2} = PlayerData2]}) ->

	 %% ...

	 {reply, ok, NewState}.

Binary Syntax

IPv4 Packet
<<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
 ID:16, Flgs:3, FragOff:13, TTL:8, Proto:8, HdrChkSum:16,
 SrcIP:32, DestIP:32, RestDgram/binary>> = Packet.

Verifies *and* binds simultaneously.

MP3 Frame Header
decode_header(<<2#11111111111:11,B:2,C:2,_D:1,E:4,F:2,G:1,Bits:9>>) ->

	 %% header code

Many Processes

Compared to other languages, they are effectively free.

Completely removes the need for non-blocking programming style
like Twisted Python, Node.js, and C select/poll loops.

In Joe's book, 20,000 took 10 microseconds of wall time. so did
50,000. So did 200,000.

Message Passing

Easy to reason about.

Selective receive is also very powerful. For instance you can spawn a
ton of processes to do something to a list, given them a index. They
reply with the index and the value. The events all arrive out of order
when they are done, but you receive them in order and get a sorted
version.

Distributed Erlang

PIDs are for the whole cluster. All the normal stuff you do in Erlang is
exactly the same for the distributed case, except the latency is higher.

OTP

Tooling

Dialyzer, QuickCheck, rebar, Tidier

Apps and Libraries

ejabberd, Riak, CouchDB, webmachine,
RabbitMQ

Mild-mannered

Erlang

Snack Words is
an iOS game.

Apple wants me to use
Objective-C.

It's not my favorite, but it certainly is the easiest choice.

The server can be written in
anything.

This goes both ways. I could use the coolest thing, but also, the user's
will never care as long as it works.

The goal is to
keep it simple

and write it
fast.

What to use?

Use Erlang of course.

But wait!
It also needs a protocol.

Roll your own with Erlang.

What's cheap to implement on iOS?

The Protocol

Length prefixed JSON packets.

gen_tcp provides
{packet, N}

for N = 1,2,4

Receive:
{tcp, Socket, Data}

Decode:
mochijson2:decode(Data)

Encode:
Data = mochijson2:encode(Json)

Send:
gen_tcp:send(Socket, Data)

Objective-C:

-	 (void)sendAvailableData {
	 	 NSUInteger sentBytes, maxLen;
	 	 do {
	 	 	 if (outBuffer == nil) {
	 	 	 	 if ([sendQueue count] > 0) {
	 	 	 	 	 id jsonObj = [sendQueue objectAtIndex:0];
	 	 	 	 	 [sendQueue removeObjectAtIndex:0];
	 	 	 	 	 NSString *jsonString = [jsonObj JSONRepresentation];

	 	 	 	 	 NSLog(@"SENDING: %@", jsonString);
	 	 	 	
	 	 	 	 	 NSData *data = [jsonString dataUsingEncoding:NSUTF8StringEncoding];
	 	 	 	 	 NSUInteger len = htons([data length]);
	 	 	 	
	 	 	 	 	 [outBuffer release];
	 	 	 	 	 outBuffer = [[NSMutableData dataWithCapacity:[data length] + 2] retain];
	 	 	 	 	 [outBuffer appendBytes:&len length:2];
	 	 	 	 	 [outBuffer appendData:data];
	 	 	 	 	 outPos = 0;
	 	 	 	 } else {
	 	 	 	 	 // no more data to send
	 	 	 	 	 break;
	 	 	 	 }
	 	 	 }
	 	
	 	 	 maxLen = ([outBuffer length] - outPos) < 4096 ? ([outBuffer length] - outPos) : 4096;
	 	 	 sentBytes = [outStream write:([outBuffer mutableBytes] + outPos) maxLength:maxLen];
	 	 	 outPos += sentBytes;
	 	
	 	 	 if ((outPos + 1) >= [outBuffer length]) {
	 	 	 	 [outBuffer release];
	 	 	 	 outBuffer = nil;
	 	 	 	 outPos = 0;
	 	 	 }
	 	 } while (sentBytes >= maxLen);
	 }

["play"]

["submit", {"word": "erlang"}]

Erlang:

idle({data, [<<"play">> | _]},
	 StateData = #sd{player=Player}) ->

	 %% handle command

Look how pretty this is!

Objective-C:
- (id)addHandlerForCommand:(NSString *)command
	 	 notifyObject:(id)object
	 	 selector:(SEL)selector
	 	 repeat:(BOOL)repeat;

- (id)addHandlerForCommand:(NSString *)command
	 	 withBlock:(LLSWClientBlock)block
	 	 repeat:(BOOL)repeat;

20-30 lines of code to make it reasonable.

Game Logic

Clients

 a set of states and transitions

OTP has a whole behavior for this called gen_fsm.

Client States

starting, authing, idle, waiting,
playing

OTP has a whole behavior for this called gen_fsm.

authing({data, [<<"auth">>, Props]}, State) ->

	 	 %% authenticate

waiting({game_start, Game, Letters, Time, Players},
	 	 	 State) ->

	 	 %% send notification to client

playing({data, [<<"submit">>, Props]},
	 	 	 StateData = #sd{game=Game}) ->

	 	 %% handle word

OTP has a whole behavior for this called gen_fsm.

Games

keeps track of time, score, and
communicates with

client processes

OTP again has a behavior for this kind of state bucket, gen_server

Receives:

Timer messages:
tick

Found words:
{submit_word, Word}

submit_word is an RPC call, since we must return the success value
and the new scores

when it gets a tick, it checks if the game is over

when it gets a word, it has to verify it is valid and hasn't already been
found

Sends:

{game_start, ...}

{clock, TimeLeft}

{word_found, Word, Who, ...}

{game_end, Winner, ...}

Server Design

The server is an
OTP application.

The pieces:

clients
games

socket listener
waiting pool

Process Tree:

Each game is a process which will be linked to the game supervisor

Each client is a process linked to the client supervisor.

If a client crashes, the rest of the server is fine. If a game crashes, only
the players are affected

One process per client.
One process per game.

1000 players
500 games

4 service processes
5 supervisors

= 1509 processes

Permanent state kept in
Mnesia.

But it's modular, so it could
easily be replaced.

There is a module called sw_db_mnesia, and the that is passed into
the rest of the server. Changing the database means adjusting the
configuration and creating a new sw_db_foo module that implements
the same API.

Code

handle_info({tcp, Socket, Data}, StateName, StateData) ->
 %% set the socket so we can receive another data packet
 ok = inet:setopts(Socket, [{active, once}]),

 %% verify that Data is a JSON object
 case catch mochijson2:decode(Data) of
 {'EXIT', _} ->
 {stop, invalid_json, StateData};
 [_Cmd] = Json ->
 ?MODULE:StateName({data, Json}, StateData);
 [_Cmd, _Props] = Json ->
 ?MODULE:StateName({data, Json}, StateData);
 _ ->
 {stop, bad_request, StateData}
 end;

- (void)readAvailableData {
	 // read all available data appending to inBuffer
	 uint8_t buf[4096];
	 NSUInteger len;
	 NSMutableArray *packetQueue = [NSMutableArray arrayWithCapacity:5];
	
	 do {
	 	 len = [inStream read:buf maxLength:4096];
	 	 [inBuffer appendBytes:buf length:len];

	 	 while (1) {
	 	 	 if (packetLength < 0 && [inBuffer length] >= 2) {
	 	 	 	 // we have enough data to read the packet length
	 	 	 	 packetLength = ntohs((uint16_t)(*(uint16_t *)[inBuffer mutableBytes]));
	 	 	 	 inPos += 2;
	 	 	 } else {
	 	 	 	 break;
	 	 	 }
	 	 	
	 	 	 if (packetLength >= 0 && ([inBuffer length] - inPos) >= packetLength) {
	 	 	 	 NSData *data = [NSData dataWithBytes:([inBuffer mutableBytes] + inPos) length:packetLength];
	 	 	 	 NSString *json = [[[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding] autorelease];
	 	 	 	
	 	 	 	 NSLog(@"RECVING: %@", json);
	 	 	 	
	 	 	 	 [packetQueue addObject:[json JSONValue]];
	 	 	 	
	 	 	 	 [inBuffer replaceBytesInRange:NSMakeRange(0, 2 + packetLength) withBytes:NULL length:0];
	 	 	 	 inPos = 0;
	 	 	 	 packetLength = -1;
	 	 	 } else {
	 	 	 	 break;
	 	 	 }
	 	 }
	 } while (len == 4096);
	
	 for (id packet in packetQueue) {
	 	 [self notifyPacket:packet];
	 }
}

idle({data, [<<"play">> | _]}, StateData = #sd{player=Player}) ->
 case sw_pool:join_pool(Player) of
 {ok, joined} ->
 send([play_ok], StateData),
 {next_state, waiting, StateData, ?PING_INTERVAL};
 {error, _} ->
 send([play_fail, {struct, [{reason, <<"Internal error">>}]}],
 StateData),
 {next_state, idle, StateData, ?PING_INTERVAL}
 end;

DB Functions

-export([start/0,
 stop/1,
 get_player/3,
 create_player/2,
 create_player/5,
 save_player/2,
 move_player/3,
 authenticate/2,
 pick_puzzle/1,
 get_words/2,
	 	 ...]}.

Code Size:

sw_client.erl - 439 lines
sw_game.erl - 259 lines

elo.erl - 177 lines
sw_db_mnesia.erl - 566 lines

All code - 2416 lines
All tests - 857 lines

At Erlang Factory Lite LA I said I expected the whole project to come in
under 2k lines. I was pretty close.

Performance:

Load tested 2000 clients on my laptop

Currently running on the cheapest Linode

The Future

Moving to a new data store

Pretty easy. Just write a new module and change the applications
configuration.

Main issue would be that you won't have easy access to Erlang terms;
need to serialize/deserialize to SQL or JSON or something else.

Outgrowing a machine

Fire up another node and put both of them behind a load balancer and
you're done.

The sw_pool process could exist only on one node or on multiple.

One of the design goals was to be extremely cheap to deploy, because
there is no recurring revenue per customer.

Conclusions

Little custom protocols and network servers are right in Erlang's sweet spot.

It's extremely simple. It's really small. That makes is cheap and easy to maintain.

It's very cheap to deploy, which means I'm not going to lose money in infrastructure costs.

An equivalent system in Python might be similarly small, but future proofing would be significantly harder. Maintaining state in a real-
time game server is A LOT harder; I've done it.

Not everything is in Erlang. I used Python for massaging the word list and creating the game databases. It can certainly be done in
Erlang, but text file manipulations aren't really in the sweet spot.

jack@metajack.im
@metajack

http://metajack.im

http://snackwords.com

