
Erlang/OTP
and how the PRNGs work

Kenji Rikitake
Academic Center for Computing

and Media Studies (ACCMS),

Kyoto University

25-MAR-2011

Kenji Rikitake / Erlang Factory SF Bay 2011 1

Contents

What is random number generator?

Requirement of RNGs

True RNGs .vs. Pseudo RNGs (PRNGs)

RNGs implemented in Erlang/OTP

crypto and random modules and their issues

PRNG enhancements

SFMT: a long-period PRNG with NIFs

Wichmann-Hill 2006 algorithm (random_wh06)

Conclusions and future works

Kenji Rikitake / Erlang Factory SF Bay 2011 2

What is random number generator?

Generating sequence of discrete numbers

Two types of RNGs:

"True" RNGs: data from physical phenomena

Pseudo RNGs: computed from a seed

seed: initial vectors of tables of the internal state

In Erlang/OTP, two modules of RNGs

crypto: OpenSSL API (NIFs from R14B)

random: Wichmann-Hill AS183 (in 1982)

Kenji Rikitake / Erlang Factory SF Bay 2011 3

Requirements of RNGs

Uniform deviates
Each of possible values is equally probable

The building block for other deviates

Each number in the sequence must be
statistically independent
Non-deterministic (unpredictable from past)

Non-periodic (no same sequence reappears)

Fast enough to supply the demand
Generation speed could be a bottleneck

Kenji Rikitake / Erlang Factory SF Bay 2011 4

"True" RNG hardware examples

Collecting physical randomness / entropy
Avalanche diode noise
Free-running oscillators
Atmospheric noise (random.org uses this)

Slow and expensive
The generation process does not guarantee if the
output is equally probable and statistically independent
The output should be continuously verified and
calibrated if the offset of the output deviate is large

See RFC4086 Section 3 and Section 4 for the details

Not repeatable (at least theoretically)
Practically used for seeding PRNGs for cryptography

Kenji Rikitake / Erlang Factory SF Bay 2011 5

http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086

Avalanche diode RNG circuit example

Kenji Rikitake / Erlang Factory SF Bay 2011 6

Example at https://github.com/jj1bdx/avrhwrng/
Speed: ~10kbps (or even slower for accuracy)

https://github.com/jj1bdx/avrhwrng/

Arduino RNG looks like this

Kenji Rikitake / Erlang Factory SF Bay 2011 7

Photo by Kenji Rikitake 2009

Transistors
as noise
diodes

Characteristics of pseudo RNGs

Computed number sequences

Deterministic by definition

given the same seed, the same results show up

Very long period but periodic anyway

Longer period needed for larger scale application

Faster and more efficient than "True" RNGs

Practical use: simulation and modeling

random sampling / hashing / testing

Load balancing, DHT, Monte Carlo method, etc.

Kenji Rikitake / Erlang Factory SF Bay 2011 8

Cryptographic strength of PRNGs

Cryptographically-strong PRNGs must:
use the algorithm to prevent future data from
the past generated data (with AES, SHA, etc.)
maintain collection of entropy pools from the
various sources (network activities, etc.)

virtual machines: less entropy will be obtainable

secure the seeding process to prevent injection
attempts from the attackers

Use well-established methods for security
OpenSSL uses /dev/urandom on FreeBSD
Accuracy transcends speed

Expect a lot of time to obtain sufficient random bits

Kenji Rikitake / Erlang Factory SF Bay 2011 9

So what kind of RNGs in Erlang/OTP?

crypto module

rand_bytes/1, rand_uniform/2

OpenSSL API functions

Always use crypto functions for security

random module: Wichmann-Hill AS183

period is very short (~ 7 x 10^12) [1]

Written solely in Erlang

Kenji Rikitake / Erlang Factory SF Bay 2011 10

[1] B. A. Wichmann, I. D. Hill, “Algorithm AS 183: An Efficient and Portable Pseudo-Random Number
Generator”, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 31, No. 2 (1982), pp.
188-190, Stable URL: http://www.jstor.org/stable/2347988

http://www.jstor.org/stable/2347988
http://www.jstor.org/stable/2347988

Original AS183 code in FORTRAN

Kenji Rikitake / Erlang Factory SF Bay 2011 11

C IX, IY, IZ SHOULD BE SET TO INTEGER VALUES
C BETWEEN 1 AND 30000 BEFORE FIRST ENTRY

IX = MOD(171 * IX, 30269)
IY = MOD(172 * IY, 30307)
IZ = MOD(170 * IZ, 30323)

RANDOM = AMOD(FLOAT(IX) / 30269.0 +
 FLOAT(IY) / 30307.0 + FLOAT(IZ) /
 30323.0, 1.0)

Source: Microsoft, Description of the RAND function in Excel
 http://support.microsoft.com/kb/828795

http://support.microsoft.com/kb/828795

random module code of AS183

Kenji Rikitake / Erlang Factory SF Bay 2011 12

%% from lib/stdlib/src/random.erl
%% of Erlang/OTP R14B02

uniform() ->
 {A1, A2, A3} = case get(random_seed) of
 undefined -> seed0();
 Tuple -> Tuple
 end,
 B1 = (A1*171) rem 30269,
 B2 = (A2*172) rem 30307,
 B3 = (A3*170) rem 30323,
 put(random_seed, {B1,B2,B3}),
 R = A1/30269 + A2/30307 + A3/30323,
 R - trunc(R).

AS183 512x512 bitmap pattern test

Kenji Rikitake / Erlang Factory SF Bay 2011 13

(this looks well-randomized visually)

What weak or bad RNGs will cause

Vulnerability by predictable choice

DNS UDP source port numbers

Precisely guessing cross-site state through
JavaScript Math.random() method [2]

Non-uniform bias on simulation

Which may show up on a short-period RNG

Assumption of uniform deviate may fail

Kenji Rikitake / Erlang Factory SF Bay 2011 14

[2] A. Klein: Temporary user tracking in major browsers and Cross-domain information leakage and attacks,
Trusteer, 2008, URL: http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-
browsers-and-cross-domain-information-leakag

http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag

rand(0,1) on PHP 5 Windows

Kenji Rikitake / Erlang Factory SF Bay 2011 15

(you can see a repetitive pattern - that's bad)
Source: http://twitpic.com/gq81b/full

http://twitpic.com/gq81b/full
http://twitpic.com/gq81b/full
http://twitpic.com/gq81b/full

Another popular example of bad RNG

Kenji Rikitake / Erlang Factory SF Bay 2011 16

%% originally from http://xkcd.com/221/
%% converted(?) to Erlang by Kenji Rikitake

-module(get_random_number).
-export([rand/0]).

rand() ->
 % Chosen by fair dice roll.
 % Guaranteed to be random.
 4.

%% DO NOT USE THIS FOR A REAL APPLICATION!

http://xkcd.com/221/

Issues needed to be solved

For security, crypto functions are must
In ssh module of R14B02 only AS183 found

Longer period for non-crypto RNGs
AS183 is good, but we need something better

7 x 10^12 period only holds ~81 days, if you
generate 1 million random numbers for each second

Faster generation for non-crypto RNGs
Faster algorithm for integer use

Maybe even faster with NIFs

Kenji Rikitake / Erlang Factory SF Bay 2011 17

SIMD-Oriented Mersenne Twister

A very good and fast PRNG
A revised version of Mersenne Twister

very good = very long generation cycle
typical: 2^19937 - 1, up to 2^216091 – 1

(depending on the internal state table size)

Supporting SSE2/altivec SIMD features

Open source and (new) BSD licensed

Implementations of (SF)MT avaliable for:
C, C++, Gauche, Java, Python, R, etc.

URL: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html

Kenji Rikitake / Erlang Factory SF Bay 2011 18

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html

So why SFMT on Erlang?

The PRNG quality is well proven

survived the DIEHARD test

It would be fast if implemented with NIFs

and that's what I have done

SFMT RNG parameters are tunable

multiple algorithms generating independent
streams possible if needed

Kenji Rikitake / Erlang Factory SF Bay 2011 19

PRNG enhancements with sfmt-erlang

SFMT implementation

Making the C code reentrant
http://github.com/jj1bdx/sfmt-extstate

of five (5) different periods with NIFs
~40 times faster than the non-NIF code

it's even faster than random module

Wichmann-Hill 2006 generator [3]

Called random_wh06 module

A better RNG when NIFs can't be used

Kenji Rikitake / Erlang Factory SF Bay 2011 20

[3] B.A. Wichmann, I.D. Hill, Generating good pseudo-random numbers, Computational Statistics & Data
Analysis, Volume 51, Issue 3, 1 December 2006, Pages 1614-1622, ISSN 0167-9473, DOI:
10.1016/j.csda.2006.05.019.

http://github.com/jj1bdx/sfmt-extstate
http://github.com/jj1bdx/sfmt-extstate
http://github.com/jj1bdx/sfmt-extstate
http://dx.doi.org/10.1016/j.csda.2006.05.019
http://dx.doi.org/10.1016/j.csda.2006.05.019

SFMT Step 1: reentrant C code

Revised the SFMT reference code
Removed all arrays

The internal state table was defined as
the ultimate form of the shared memory evil!

Removed the altivec and 64bit features
no testing environment available

SSE2 code removed
crashes for an unknown reason

128-bit alignment issue of enif_alloc()?

Rewritten the code so that the internal state
tables must be passed by the pointers

Allowing concurrent operation of the functions

Kenji Rikitake / Erlang Factory SF Bay 2011 21

SFMT Step 2: pure Erlang version

Literal translation from the revised C code

SFMT itself can be written as a recursion
a[X] = r(a[X-N], a[X-(N-POS1)], a[X-1], a[X-2])

Extensive use of head-and-tail lists

Adding elements to the heads and do the
lists:reverse/1 made the code 50% faster than
using the operator

Still ~300 times slower than the C Code

But it worked! (And that's what is important)

Kenji Rikitake / Erlang Factory SF Bay 2011 22

C to Erlang conversion tips

Erlang integers are BIGNUMs

Explicitly limit the result bit length by
each time after bsl and any other operation

which may exceed the given C integer length

Erlang bsr is arithmetic shift right

e.g., -1 =:= -10 bsr 4 is true

The array module object is immutable

i.e., array:set/3 makes a modified copy

Kenji Rikitake / Erlang Factory SF Bay 2011 23

SFMT Step 3: writing a NIF version

NIF modules are full of C static code

It's a shared-everything world as default

When a NIF fails, it crashes the BEAM

The fastest way to learn the NIF coding:

read the manual of erl_nif (under erts)

read the R14 crypto module

try first from smaller functions, step-by-step

Use regression testing tools (e.g., eunit)

Kenji Rikitake / Erlang Factory SF Bay 2011 24

NIF programming tips

It's hard-core C programming

Put all functions in the same .c file

Remember how static scope works

Make the copy first before modifying a binary

Without this you may face a heisenbug

Erlang binaries are supposed to be immutable;
so the content must stay unmodified!

Learn the enif_*() functions first

they will make the code efficient and terse

Kenji Rikitake / Erlang Factory SF Bay 2011 25

A case study: table handling on SFMT

Case 1: list processing
NIF: internal table -> integer list

generating PRN by [head|tail] operation

Case 2: random access through NIF
generating PRN each time by calling a NIF
with the internal table and the index number

Result: Case 1 is faster than Case 2
on a 2-core SMP VM - parallelism discovered?

Lesson learned: profile before optimize

Kenji Rikitake / Erlang Factory SF Bay 2011 26

For the efficient Erlang + C coding

Use a decent syntax highlighter

erlang-mode and cc-mode on Emacs

Use dev tools as much as possible

eunit, fprof, rebar, escript, etc.

Automate the documentation

EDoc (for Erlang) and Doxygen (for C)

Learn the Markdown format

It's much easier than to write HTML by hand

Kenji Rikitake / Erlang Factory SF Bay 2011 27

So how fast the SFMT NIF code is?

Wall clock time of 100 * 100000 PRNs

 on Kyoto University ACCMS Supercomputer
Thin Cluster node (Fujitsu HX600)

AMD Opteron 2.3GHz amd64 16 cores/node

RedHat Enterprise Linux AS V4

Erlang R14B01, running in a batch queue

Kenji Rikitake / Erlang Factory SF Bay 2011 28

sfmt:
gen_rand_
list32/2

sfmt:
uniform_s
/1

random:
uniform_s
/1

random_wh
06:
uniform_s
/1

sfmt:
gen_rand3
2_max/2

random:
uniform_s
/2

random_wh
06:
uniform_s
/2

240ms 2600ms 7110ms 11220ms 2440ms 7720ms 11790ms

x1.0 x10.8 x29.6 x46.8 x10.2 x32.2 x49.1

speed of random .vs. random_wh06

random:uniform_s/1 random_wh06:uniform_s/1 ratio of
random_wh06 / random

reseaux 544.9ms 487.9ms 0.895

leciel 1400.3ms 2274.8ms 1.625

thin 309.2ms 331.2ms 1.071

Kenji Rikitake / Erlang Factory SF Bay 2011 29

For 100000 calls of OWN time measured by fprof on R14B01
System details:
• reseaux: Core2Duo E6550 2.3GHz FreeBSD/i386 8.2-RELEASE
• leciel: Atom N270 1.6GHz FreeBSD/i386 8.2-RELEASE
• thin: Opteron 8356 2.3GHz RHEL AS V4 on amd64
This set of results suggest:
• The speed overhead from random to random_wh06 for CPUs

with sufficient floating-point calculation support: < 10%
• On a CPU with lesser capability such as Atom, the overhead

will increase to > 60%

Total exec time of sfmt:gen_rand32_max
.vs. SFMT internal table length

Kenji Rikitake / Erlang Factory SF Bay 2011 30

(for 100 * 100000 calls)

2^607-1

2^4253-1 2^19937-1 2^86243-1 2^216091-1

5 10 20 50 100 200 500 1000 2000

0

2
0

0
0

4

0
0

0

6
0

0
0

8

0
0

0

5 10 20 50 100 200 500 1000 2000

0

2
0

0
0

4

0
0

0

6
0

0
0

8

0
0

0

5 10 20 50 100 200 500 1000 2000

0

2
0

0
0

4

0
0

0

6
0

0
0

8

0
0

0

N (internal table length [of 128bit words])

T
o

ta
l
w

a
ll

c
lo

c
k
 t
im

e
[m

s
]

leciel
thin
reseaux

SFMT gen_rand32_list/2 performance

Kenji Rikitake / Erlang Factory SF Bay 2011 31

2^607-1
2^4253-1 2^19937-1 2^86243-1

2^216091-1

Total OWN time measured by fprof for 10 calls of
gen_rand_list32(10000, State) of each sfmt module

5 10 20 50 100 200 500 1000 2000

0

2

4

6

8

5 10 20 50 100 200 500 1000 2000

0

2

4

6

8

5 10 20 50 100 200 500 1000 2000

0

2

4

6

8

N (internal table length [of 128bit words]

to
ta

l
O

W
N

 t
im

e
 [
m

s
]

leciel

thin

reseaux

SFMT gen_rand_all/1 performance

Kenji Rikitake / Erlang Factory SF Bay 2011 32

5 10 20 50 100 200 500 1000 2000

1

2

5

1
0

2

0

5
0

N (internal table length [of 128bit words]

O
W

N
 t
im

e
 f

o
r

e
a

c
h

 c
a

ll
[m

ic
ro

s
e

c
o

n
d
]

2^607-1
2^4253-1

2^19937-1

2^86243-1

2^216091-1

gen_rand_all/1 OWN time measured by
fprof, for 100000 integer and 100000
float random numbers of sfmt modules
measured on thin (Kyoto University
ACCMS supercomputer)

Conclusion and future works (1)

SFMT NIF: >x3 faster than AS183

It's also better for simulation and modeling

SFMT NIF behavior for period length

Shorter period causes larger calling overhead

gen_rand32_list/2 exec time is ~ constant

gen_rand_all/1 exec time is proportional to the
internal state table size for a large period

random_wh06: 10~60% slower than AS183

more room to optimize for slower CPUs
Full 32bit integer is BIGNUM for 32bit Erlang VM

Kenji Rikitake / Erlang Factory SF Bay 2011 33

Conclusion and future works (2)

Future works: exploring parallelism
SFMT is inherently sequential/iterative

Looking for a new algorithm is needed
There are parallelism-oriented PRNG algorithms

Simplistic algorithms: LShift, XOR32, etc.

Review of Erlang/OTP code for the secure
usage of PRNGs is needed
Very few network modules use crypto RNG

Analysis on Windows and other OSes needed

Kenji Rikitake / Erlang Factory SF Bay 2011 34

Acknowledgments to:

ACCMS, Kyoto University

In this research, I used the Kyoto University
ACCMS Supercomputer Thin Cluster System

It's more cost effective than building an amd64
test environment on an independent PC

People helping the code development:

Dave "dizzyd" Smith, Tuncer Ayaz, Tim Bates,
Dan Gudmudsson, Richard O'Keefe

and all the participants of EF SF Bay 2011!

Kenji Rikitake / Erlang Factory SF Bay 2011 35

References

• https://github.com/jj1bdx/sfmt-erlang/

• random.org http://www.random.org/

• Press et al, Numerical Recipes (Third Edition),
Cambridge Press, 2007, ISBN 9780521880688,
Chapter 7 "Random Numbers", see
http://www.nr.com/

• http://www.diigo.com/user/jj1bdx/random
 My bookmarks about random number generation

• Ferguson et al, Cryptography Engineering,
Wiley, 2010, ISBN 9780470474242 , Chapter 9
"Generating Randomness"

Kenji Rikitake / Erlang Factory SF Bay 2011 36

https://github.com/jj1bdx/sfmt-erlang/
https://github.com/jj1bdx/sfmt-erlang/
https://github.com/jj1bdx/sfmt-erlang/
http://www.random.org/
http://www.nr.com/
http://www.diigo.com/user/jj1bdx/random
http://www.diigo.com/user/jj1bdx/random

