The Case for Erlang as a
Testing Language

Automation and Property Testing

Graham Crowe

Overview

» A broad summary of my experiences:
—Hardware Development Engineer
—AXE (Digital Telephone Exchanges)
—Using Python as testing language
—Discovering Erlang

» Examples of applying Erlang for testing:
— Stateless Property Testing
— Stateful Property Testing

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 2

ERICSSON

Jindalee Operational Radar Network

HOW IT WORKS

N\ Jindalee system Y sRuTt
- N 2) dotacts misalle

passiag through
lodesphere

N ol 7, Signal el feom
Eneery slats / 1 !" : ’ f 3 llh‘.leom Qm?m.
fires misslle |, ™ A, ___/ basu near Adetalde
! and boanced lo
US spy satolliles

Radar 1)

Radar 2 — j
St 4;,.\&\‘ /-/ =

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 3 JORN PROJECT RECEIVER SITE ANTENNA ARRAY, LAVERTON W.A
PIC BY CPL DAVE BROOS, DEFENCE PUBLIC AFFAIRS.

ERICSSON

The AXE 10 Years (1994-2002)

» Structured and consistent
— blocks, subsystems
» Proprietary language
— PLEX (PASCAL flavored)
— ASA (assembler language)
» Execution Model
— signaling between blocks
—no shared data between blocks
— global job buffers for signaling
» Debugging
— “Test System;”
» Patchable (ASA)
» Forlopp

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 4

The Python Years (2002-2005)

ERICSSON

Traffic

Signalling

Simulator

RNCII

ATM

Simulator

telnet

!

Mobile

Simulator

» Manual testing laborious and
error prone CUT <
» Developed a test environment for
“black box ” testing
—reduced manual effort but ...
— complete automation not GUI <>
supported
» Concurrency essential for
automation

— multiple interfaces to the “black
box ” that require coordination

— Multiple clients to the “black box”

» Added concurrency to the test
environment

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 5

e

python

The Erlang Years (2005-present)

» Easy to grasp its notion of

concurrency

odd to begin with
— now feels natural

» High abstraction

—my PLEX background helped ‘
» Functional programming seemed

— very easy to design code that

does rather complex things E R L A N G
» Introduced to QuickCheck

Using Erlang for Testing non-Erlang Products | Public | ©E

SSSSSSS

QuviQ

AB 2011 | 2011-02-28 | Page 6

The case for Erlang as a testing language

» Erlang has a rich tool set for testing systems written in
Erlang, ranging from:

—unit test -> integration test -> system test
» What about testing systems that are not written in Erlang?

» In general unit testing is performed in the native language

— Exception: Quickcheck has support for unit testing C code compiled
with GCC

» Test environments for integration test and system test are
often written in other languages

» Why not use Erlang?
» Why use Erlang?

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 7

Some Concepts for Grey Box Testing

» We need some enablers in our SUT for communication
with the ERTS:
—SEND
Send an asynchronous signal to a component
—PEEK

Forward a copy of a particular sent or received signal to the
requester

—GRAB

Redirect a particular sent or received signal (to the requester or
discard)

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 8

ERICSSON

Some Simple Client Server Use Case

some target system

client server

“activate_req”

“activate cfm”

“report ind”

“report ind”

“report ind”

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 9

ERICSSON

Applying PEEK, GRAB & SEND

some target system

erts client server

grab req/cfm “activate cfm”

v

grab req/cfm “report ind” (discard)

\4

peek reg/cfm “report ind” (count = 2)

send req/cfm “activate req’

\ 4

“activate req’

grab ind “activate cfm” <

discard “report ind”

peek ind “report ind”

discard “report ind”
peek ind “report ind” <

discard |g “report ind”
—

I
I
1
1
1
L}
I
I
1
1
1
L}
I
I
1
1
1
1
I
I
1
1
1
L}
!
I
1
[- ”» !
activate cfm | SUT
1
I
I
1
1
1
L}
I
1
1
1
1
I
1
1
1
L}
I
1
1
1
1
L}
I
1

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 10

-

o

ERICSSON

Stateless Test: Hard Real Time Component

some target system

3. Transport channel PDU(s) per ms

1. Allocation of physical channel (s) per ms j‘> thSical

layer

T

2. Data from antenna(s) per ms

4. Feedback per ms

time

>
v

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 11

Bit Exact Verification

ERICSSON

2a

la. Physical channel (s) content

2. Data from antenna(s) per ms

2a. Modeled radio conditions

3. Transport channel PDU(s) per ms

4. Feedback per ms

1. Allocation of physical channel (s) per ms

bl b

1l

reference

model

physical

layer

L1l

bit exact

bit exact

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 12

Stateless Test: Test Data Generation

» Each test case using the bit exact methodology can be
described by an Abstract Data Type:

— Allocation of physical channels (and content) per ms
—Modeled radio conditions

» The ADT is used to generate the test vectors
—antenna data (input)
—feedback & transport channel data (expected output)

» The ADT is used to control the allocation of physical
resources on the SUT

» We can then use stateless QuickCheck properties to
explore the parameter space of this Hard Real Time
component

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 13

ERICSSON

Stateful Test: Another Simple Client Server

some target system

client server SUT state machine
“setup service” (configuration) _
“activate service” _
“service report” N

deactive

[. ”
service report

SUT

>
deactivate

“) . activatel
service report .

»
“deactivate service” .

»
[13 - ”
release service .

» timeout

(send service report)

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 14

-

o

ERICSSON

Stateful Test: Sequence of Events

An example of a sequence of events in this case
» We need to test that scalable Eventl: “setup instance 17
servers (as depicted) can provide sveme2: “setup instance 27
. . . Event3: “activate instance 1”
multiple instances of their enigs retence ameeas v
services in all cases Events: “setup instance 3"
Event6: “activate instance 3”
» We need to generate sequences e .
) . Event7: deactivate instance 1
Of events (Wlthln the Event8: “activate instance 1”
specification) for testing the
Server EventN

» We need to test that properties of
the server hold after each event

Examples of Properties in this case

Event: “activate instance N’

Test that instance N sends reports periodically

Event: “deactivate instance N’

Test that instance N does not send any reports

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 15

Summary

» Given some enablers (such as the PEEK, SEND and
GRAB concepts) within a large complex product it is
possible to deploy property based testing

— Stateless and Stateful

» Such enablers are often necessary in any case to assist
integration (grey box testing) of large complex products

» When using Erlang as a testing language together with
QuickCheck the potential benefits are enormous

Using Erlang for Testing non-Erlang Products | Public | © Ericsson AB 2011 | 2011-02-28 | Page 16

ERICSSON

