
Erlang Factory
Lite L.A.

What is Membase?

Membase is a distributed database

3

Membase Servers

In the data center

Web application server

Application user

On the administrator console

Web application serverWeb application server

Five minutes or less to a working
cluster
• Downloads for Linux and Windows
• Start with a single node
• One button press joins nodes to a cluster
Easy to develop against
• Just SET and GET – no schema required
• Drop it in. 10,000+ existing applications

already “speak membase” (via memcached)
• Practically every language and application

framework is supported, out of the box
Easy to manage
• One-click failover and cluster rebalancing
• Graphical and programmatic interfaces
• Configurable alerting

Membase is Simple, Fast, Elastic

4

Membase is Simple, Fast, Elastic

5

Predictable
• “Never keep an application waiting”
• Quasi-deterministic latency and throughput
Low latency
• Built-in Memcached technology

High throughput
• Multi-threaded
• Low lock contention
• Asynchronous wherever possible
• Automatic write de-duplication

Membase is Simple, Fast, Elastic

6

Zero-downtime elasticity
• Spread I/O and data across commodity

servers (or VMs)
• Consistent performance with linear cost
• Dynamic rebalancing of a live cluster
All nodes are created equal
• No special case nodes
• Any node can replace any other node, online
• Clone to grow
Extensible
• Filtered TAP interface provides hook points

for external systems (e.g. full-text search,
backup, warehouse)

• Data bucket – engine API for specialized
container types

Leading cloud service (PAAS)
provider
Over 65,000 hosted
applications
Membase Server serving over
1,200 Heroku customers (as of
June 10, 2010)

Deployments Leading Membase

7

Social game leader – FarmVille,
Mafia Wars, Café World
Over 230 million monthly users
Membase Server
is the 500,000 ops-per-second
database behind FarmVille and
Café World

Membase Architecture

Clustering

• Underlying cluster
functionality based on
erlang OTP

• Have a custom, vector
clock based way of storing
and propagating...
– Cluster topology
– vBucket mapping

• Collect statistics from many
nodes of the cluster
– Identify hot keys, resource

utilization

9

ns_servermembase
(memcached + membase engine)

moxi ns_server

vbucketmigrator
TAP

memcached operations
with tap commands

memcached operations

Client

port 11211
memcached operations

moxi + Client

port 11210
memcached operations REST/comet

cluster topology
and vbucket map

Clients, nodes and other nodes

11

TAP

• A generic, scalable method of streaming mutations
from a given server
– As data operations arrive, they can be sent to arbitrary TAP

receivers

• Leverages the existing memcached engine interface,
and the non-blocking IO interfaces to send data

• Three modes of operation

Working setData
Mutations

Working setData
Mutations

Working set

12

Membase data flow – under the hood

13

SET request arrives at
KEY’s master server

Listener-Sender

Master server for KEY Replica Server 2 for KEYReplica Server 1 for KEY

3 3

1
SET acknowledgement
returned to application2

DiskDisk Disk

RAM

m
em

ba
se

 s
to

ra
ge

 e
ng

in
e

DiskDisk Disk

4

Data buckets are secure membase “slices”

14

Membase data servers

In the data center

Web application server

Application user

On the administrator console

Bucket 1
Bucket 2

Aggregate Cluster Memory and Disk Capacity

vBucket mapping

15

Disk > Memory

B
uc

ke
t C

on
fig

ur
at

io
n

mem_high_wat

mem_low_wat

memory quota

16

Dataset may have many
items infrequently accessed.
However, memcached has
different behavior (LRU) than
wanted with membase.

Still, traditional (most)
RDBMS implementations are
not 100% correct for us
either. The speed of a miss
is very, very important.

Erlang Experiences

Membase Erlang “Control Plane”

• Built atop distributed Erlang
– Using os_mon for gathering cluster information
– Using Mnesia to store historic statistics

• Our own Supervisors and hierarchy
– Minorly modified C processes
– Monitor OS processes as Erlang processes
– Supervisor cushion

• Slow down fast startup failures while keeping normal exit/crash
fast

• Custom ‘heartbeat’
– Determine failure and gather system resource basics

• Mochiweb for REST interface
– Represent all cluster state and management

18

Erlang and Membase Tricks

• IP/Interface problems
– Respond where asked

• Integrated erlwsh, behind HTTP auth
• Update state from anywhere

– Vector clocks for config
• The “global singleton”

– Blame Matt for name
– Some processes in one place

19

Erlang and Membase: Lessons Learned

• Networks are more fluid
– Developer laptops
– Cloud compute environments

• Anyone need some I/O?
– Look for the +A

• “+A size: Sets the number of threads in async thread pool,
valid range is 0-1024. Default is 0.”

• os_mon
– Virtual is still virtual
– Disk info not quite what we needed

• List processing overuse
• SASL Logs for non-Erlang initiated

20

Membase Demo

22

Q&A

