Cool Tools for Modern Erlang
Program Development

Kostis Sagonas

Erlang program development

B AcswlocalhostE W
\/ % Nemacsil oAl Hos) Bk

File Edit Options Buffers Tools Erlang Help

DEExEB I $DRE XY

0O = string:tokens(os:cmd(["grep -1 \"", CQ ,"\" ", FName,
" 2>/dev/null | head -n ", integer_to_list(N)]), "\n"),
M ++ lists:map(fun erlang:list_to_binary/l, lists:reverse(0)).

event_filter (Key, EvLst) ->
Fun = fun
({K, _}) when K == Key -> true;
() -> false
end,
{_, R} = lists:unzip(lists:filter(Fun, EvlLst)),

——:%% gvent server.erl 65% L126

> erlc file.erl > rebar compile

Kostis Sagonas Cool Tools for Modern Erlang Program Development

What this talk i1s about

* Overview some Erlang software development
tools that | and my students have built

* Convince you

- of their value and benefits of using them

- why they should have a key role in your development
environment

* For tools that are mature

- give some hints/advice on how to properly use them
- show some new goodies

* For new tools, show/demo their capabillities

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Dialyzer

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Dialyzer: A defect detection tool

* Uses static analysis to identify discrepancies in
Erlang code bases

- code points where something is wrong

* often a bug &\"/*

* or in any case something that needs fixing
* Fully automatic

* Extremely easy to use
* Fast and scalable
 Sound for defect detection

- “Dialyzer is never wrong”

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Dialyzer

* Part of the Erlang/OTP distribution since 2007
* Detects

- Definite type errors

- API violations

- Unreachable and dead code
- Opacity violations

- Concurrency errors

Data races (-Wrace conditions)
* Experimental extensions with

- Stronger type inference
- Detection of message passing errors & deadlocks

Kostis Sagonas Cool Tools for Modern Erlang Program Development

How to use Dialyzer

* First build a PLT (needs to be done once)

> dialyzer --build plt --apps erts kernel stdlib

* Once this finishes, analyze your application

> cd my app
> erlc +debug info -o ebin src/*.erl
> dialyzer ebin

* |If there are unknown functions, you may need to
add more stuff to the PLT

> dialyzer --add to plt --apps mnesia inets

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Used more and more out there

C | § https://github.com/klacke/yaws/commits/master 2011-02-25

lbe ([Research o

dialyzer

2011-02-26 | B

Fix Dialyzer warning: remove dead code
¥ £ < more dialyzer bugs, scap srv startup code that could never run

authoar) -
tuncer (author - klacke (author)
February 24. 2011 w# February 26,2011
vinoski (committer
Eebruary 97 2041 Some minor bugs, and some dead code remowed, all found by Tuncers run of dialyzer
reruary £ A1
- klacke (author
Fix unused clause Dialyzer warnings in yaws_rss W Februarny 25 2011

tuncer (author) .
February 23 2011 compile bug

klacke (authar)

O vinoski (committer) ,Q' February 25, 2011

] 4
February 27, 2011

Fix zlib:deflate/3 Dialyzer warning 2011'02'24

tuncer (author) io:format leftower
February 23, 2011 =
@ klacke (author)
LWy | February 24, 2011

' vinoski (committer)
February 27, 2011
2011-02-23

Fixed dialyzer bugs found by Tuncer, Issue #54

g klacke (author)
3 . |"|-|!:.|:_ 23 2011

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Erlang code bases ‘dialyzed’

agner alice aliter beamjs beehive beepbeep bert-erl bitcask cacherl
cacherl cecho ced chicagoboss chordial chordjerl couchbeam couchdb
cowboy disco distel dynomite edbi efene effigy egearmand-server egeoip
egitd ehotp ejabberd ejson eldap elib elib1 elock ememcached enet
eopenid eper epgsql epm epmail erlang-amf erlang-collectd erlang-
couchdb erlang-facebook erlang-js erlang-jukebox erlang-mysql erlang-
mysql-driver erlang-oauth erlang-protobuffs erlang-rfc4627 erlang-rtmp
erlang-twitter erlang-uuid erlang-websocket erlangit erlaws erlawys erldis
erlgmail erlguten erlide erlmongo erls3 erlsom erlsyslog erlwebsockserver
erlydtl erlyweb ernie esdl esmtp eswf etap etorrent ewgi excavator exmpp
fermal fragmentron fuzed gen-nb gen-paxos gen-smtp getopt giza gproc
herml hovercraft ibrowse innostore iserve jsonerl jungerl ktuo leex Ife
libgeoip-erlang log-roller log4erl Izjb-erlang mcd meck merle misultin
mochiweb mongo-erlang-driver mustache-erl natter neotoma ngeriguten
nitrogen openpoker osmos pgsql phoebus php-app playdar preach proper
protobuffs rabbit rebar redis-erl refactorerl reia reverl reversehttp riak
rogueunlike s3imagehost scalaris server sfmt-erlang sgte simple-bridge
socket-io-erlang sqlite-erlang sshrpc stoplight tcerl thrift-erl tora triq ubf
webmachine wings yatce yatsy yaws yxa zotonic

Kostis Sagonas Cool Tools for Modern Erlang Program Development

http://dialyzer.softlab.ntua.gr/

Dialyzer's site at softlab.ntua.gr

m Current warnings Heisenbug warnings Intersection warnings Warning-free applications Contact

Welcome to Dialyzer's site at the Software Engineering Laboratory of NTUA
- This site contains information for Dialyzer, the DIscrepancy AnaL'YZer for ERlang applications.

Dialyzer is a static analysis tool that identifies software discrepancies such as definite type errors, code which has
become dead or unreachable due to some programming error, unnecessary tests, etc. in single Erlang modules or
ERLANG cntire (sets of) applications. Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang
source code. The file and line number of a discrepancy is reported along with an indication of what the discrepancy is
about. Dialyzer bases its analysis on the concept of success typings which allows for sound warnings (no false positives).

You will soon find here papers about Dialyzer and tutorials for its suggested use (coming soon!)
You can find more information on how to use Dialyzer here.

For the time being, you can find results of continuously running Dialyzer on a set of open-source applications whose code is updated
periodically.

In particular, under:

e Current warnings: you can find warnings as produced by Dialyzer in the current Erlang/OTP version

e Heisenbug warnings: you can find warnings as produced by an experimental version of Dialyzer that detects some kinds of
possible concurrency errors

¢ Intersection warnings: you can find warnings as produced by an experimental version of Dialyzer that employs a stronger type
inference which tracks argument-result dependencies.

* Finally, under Warning-free applications you can see the set of code bases for which dialyzer was run but no warnings were
emitted (in any of the above categories)

If you'd like your application to be added (or removed) from these runs, don't hesitate to contact us!

The first versions of Dialyzer were created by Kostis Sagonas and Tobias Lindahl. People actively working and maintaining Dialyzer
are Kostis Sagonas, Maria Christakis and Stavros Aronis.

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Be nice to your fellow developers!

Expose type information:
make it part of the code

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Exposing type information

Can happen in either of the following ways:

* Add explicit type guards in key places in the code
- Ensures the validity of the information
- Has a runtime cost — typically small
- Programs may not be prepared to handle failures
* Add type declarations and function specs
- Documents functions and module interfaces
- Incurs no runtime overhead
- Can be used by dialyzer to detect contract violations
- Can also be handy for other tools (as we will see later)

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Turning @specs Into -specs

Often Edoc @spec annotations

o°
o°

@spec batch rename mod(OldNamePattern::string(),
NewNamePattern: :string(),
SearchPaths:: [string()]) ->
ok | {error, string()}

o° oP°
o° oP°

o®
o®

Can easily be turned into -spec declarations

-spec batch rename mod(OldNamePattern: :string(),
NewNamePattern: :string(),
SearchPaths:: [string()]) ->
'ok' | {'error', string()}.

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Turning @specs Into -specs

In some other cases

%% @spec duplicated code (FileName ::filename (),
MinLines ::integer(),
MinClones: :integer()) -> term()

o®
o®

o®
o®

Type declarations may need to be added

-type filename () :: string().
-spec duplicated code (FileName ::filename (),
MinLines ::integer(),
MinClones: :integer()) -> term().

Or, better, they may already exist in some modules

-spec duplicated code(FileName ::file:filename(),
MinLines ::integer(),
MinClones: :integer()) -> term().

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Turning @specs Into -specs

A problem with Edoc annotations is that often they
are not in accordance with the code

- Not surprising — they are comments after all!

| strongly recommend converting @specs gradually
and fixing the erroneous ones using Dialyzer

- First locally (on a module-by-module basis)
- Then globally

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Strengthening underspecified -specs

Can take place semi-automatically using Dialyzer

> dialyzer -Wunderspecs --src -I ../hrl * erl

refac duplicated code.erl:42:
Type specification for duplicated code/3 ::
([filename ()], [integer ()], [integer()]) -> term()
is a supertype of the success typing:
([string()], [integer ()], [integer()]) -> {'ok',6string()}

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Document module interfaces

Add -spec declarations
for all exported functions

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Finding missing -specs

New compiler option helps in detecting these:

> erlc +warn missing spec -I../hrl refac rename var.erl
./ refac rename var.erl:666: Warning:
missing specification for function pre cond check/4

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Typer

Kostis Sagonas Cool Tools for Modern Erlang Program Development

TypEr: A type annotator

* Part of Erlang/OTP since 2008
* Displays the function specs which

- already exist in a module/set of modules, or
- are inferred by dialyzer
* Can help in adding missing specs to files

> typer --show-exported -I../hrl refac rename var.erl

=== —— e e e e Emm Emm Em Em Emm e e —

-spec pre cond check(tuple() ,integer () ,integer () ,atom()) -> boolean().
-spec rename (syntaxTree () ,pos () ,atom()) -> {syntaxTree() ,boolean()}.
-spec rename var (filename(), ..., [string()]) ->

{'ok',string()} | {'error',string()}.

* Can also automatically annotate files

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Add types to record fields

-record (hostent,

{

h name, %% official name of host
h aliases = [], %% alias list

h addrtype, %% host address type

h length, length of address

oe oP°
oe oP°

h addr list = [] list of addresses from

})

N
-record (hostent,
{
h name :: hostname(), %% official...
h aliases = [] :: [hostname ()],
h addrtype :: "inet’ | ’ineté6’,
h length :: non _neg integer (), %%
h addr 1list = [] :: [ip address()] %%

})

Kostis Sagonas Cool Tools for Modern Erlang Program Development

How Erlang modules used to look like

-._. s alocalnosn
) £ remacsalocalhost) ||

File Edit Options Buffers Tools Erlang Help

DEExEHEBE S OB RE XY

zip_open(Archive) -> zip_open(Archive, [1).

zip_open(Archive. Options) ->
Pid = spawn{fun{} -> server_loop(not_open) end),
request(self (), Pid, {open. Archive, Options}).

zip_get (Pid) when is_pid(Pid) ->
request(self (), Pid, get).

zip_close(Pid) when is_pid(Pid) ->
request(self (), Pid. close).

61% L1010 CVS:1.14 (Erlang)————————————————————————————-

Bl Auto-saving...done

Kostis Sagonas Cool Tools for Modern Erlang Program Development

How modern Erlang modules look

) £ emacsalocal oSt) |— = >

File Edit Options Buffers Tools Erlang Help

DEEx OB ¥ OB RE XY

—type zip_open_option{) :: 'memory' | 'cooked' | {'cwd'., file:filename(}}.
—type zip_open_return() :: {'ok’', pidO} | {'error’, term(O}.

—spec zip_openf{archive()) —-> zip_open_return().
zip_open(Archive) -> zip_open(Archive, [1).
—spec zip_open{archive(), Lzip_open_option()1) -> zip_open_return().
zip_open(Archive. Options) ->
Pid = spawn{fun{} -> server_loop(not_open) end),
request(self (), Pid, {open. Archive, Options}).

—spec zip_get{pid()) -> {’'ok’'., [filespecO)1} | {'error’'. term()}.

zip_get (Pid) when is_pid(Pid) ->
request(self (), Pid, get).

—spec zip_close{pid(}} -> 'ok' | {'error', 'einval'l}.

zip_close(Pid) when is_pid(Pid) ->
request(self (), Pid. close).

60% L1018 CVS:1.14 (Erlang)—————————————————————————————

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Tidier

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Tidier: An automatic refactoring tool

* Uses static analysis and transformation to:

- Clean up Erlang code at the source level

- Modernize outdated language constructs

- Eliminate certain bad code smells from programs
- Improve performance of applications

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Properties of the transformations

* Semantics preserving
- All transformations are conservative
* Improving some aspect of the code

- Newer instead of an older/obsolete constructs
- Smaller and/or more elegant code
- Redundancy elimination
- Performance improvement
* Syntactically pleasing and natural

- Similar to what an expert Erlang programmer would
have written if transforming the code by hand

Kostis Sagonas Cool Tools for Modern Erlang Program Development

v, IitiErviewer

tuulos-disco-0.2/master/src/event_server.erl:123 : showing complete function transformations.

Original Version Suggested Version

, Eulst) -= ‘event filter{ﬁi, Evlst) -»

EUSE suggested versiun§ Keep original version

Kostis Sagonas Cool Tools for Modern Erlang Program Development

http://tidier.softlab.ntua.gr/

o | r 2 —i : — : A refactoring rool
) E 'F,_I - - -
P W W e T T _J_Il: flﬁr{LT{ﬂ“B

Welcome to the Web-based interface of Tidier!

Using tidier is very easy! Just upload vour code and follow the instructions below.
For a more comprehensive manual yvou can take a look at Tidier's wiki.

You can either upload a single .erl file or a .tar.gz archive that contains the files that you want
to get tidied.

Don't forget to choose the transformations that you would like to enable or disable from the
options on the right. You can find out what each option does by placing your mouse over the
option's name.

Mote that the "Back" button of your browser will not work properly once you start refactoring
your code.

Choose File | yo file chosen Upload Code & Start Refactoring

Tidier will show you the refactored code one ransformation at @ me. For fach transformation,
yvou can €ither accept it (recommended) or keep the original code.

Accepting a transformation often enables some other transformation on the resulting code.
After all transformations have been applied to some function, tidier will also show the complete
st of changes that took place. For functions where only one transformation is applicable, this
may give the impression that the transformations are done twice. If yvou do not like this, you
can bypass this step by disabling the button "show_final" below. Similarly, the entire code can
be transformed in one go by enabling the button "automatic" below.

show_final 2 Yes ‘o MNo

automatic) ¥es 2 MNo

Kostis Sagonas

Option
any
apply
booclean

cCases

comprehensions

exact
funs
guards
imports
intermediate
length
lists
patterns
ris
records
size
spawn
straighten
structs

Yes No

LU T U L U U

©

L

©

2

Cool Tools for Modern Erlang Program Development

Current set of transformations

* Simple transformations and modernizations
* Record transformations

* List comprehension transformations
* Code simplifications and specializations
* Redundancy elimination transformations

* List comprehension simplifications
* Zip, unzip and deforestations

* Transformations improving runtime performance

Kostis Sagonas Cool Tools for Modern Erlang Program Development

lib/kernel/src/group.erl:368

case get value(binary, Opts, case get(read mode) of
binary -> true;

__ —> false
end) of
true -> ...
Ll
case get value(binary, Opts, get(read mode) =:= binary) of
true -> ...

Kostis Sagonas Cool Tools for Modern Erlang Program Development

lib/hipe/cerl/cerl_to_icode.erl:2370

is pure op(N, A) ->
case is bool op(N, A) of
true -> true;
false ->
case is comp op(N, A) of
true -> true;
false -> is type test (N, A)
end
end.

is pure op(N, A) ->
is bool op(N, A) orelse is comp op(N, A)
orelse is type test(N, A).

Kostis Sagonas Cool Tools for Modern Erlang Program Development

lib/inviso/src/inviso tool sh.erl:1638

get all tracing nodes rtstates (RTStates) ->
lists:map(fun ({N, , }) -> N end,
lists:filter(fun ({_,{tracing, }, }) ->
true;
() -> false
end,
RTStates)) .

L]

get all tracing nodes rtstates (RTStates) ->
[N || {N,{tracing, }, } <- RTStates].

Kostis Sagonas Cool Tools for Modern Erlang Program Development

wrangler/src/refac_rename_fun.erl:344

lists:map(fun ({ , X}) -> X end,
lists:filter (fun (X) ->
case X of
{atom, X} -> true;

__ => false
end
end,
R))
N
[X || {atom, X} <- R]

Kostis Sagonas Cool Tools for Modern Erlang Program Development

yaws/src/yaws_ls.erl:255

mkrandbytes (N) ->
list to binary(lists:map(fun(N) ->
random:uniform(256) - 1
end, lists:seq(1,N))).

L]

mkrandbytes (N) ->
<< <L (random:uniform(256)-1)>> || _ <- lists:seq(1l,N)>>.

Kostis Sagonas Cool Tools for Modern Erlang Program Development

disco-0.2/master/src/event server.erl;123

event filter (Key, EvList) ->

Fun = fun ({K, _}) when K == Key ->

true;

L) >
false
end,
{ , R} = lists:unzip(lists:filter (Fun, EvList)),
R.
N

event filter (Key, EvList) ->
[V || {K, V} <- EvList, K == Key].

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Quote from a tidier user

| just ran a little demo for tidier here for ..., ..., ...,
and Many laughs and comments like "whose
code is that? Mine?!™ and a couple of "I didn't
know you could write that like that".

I'd like to force everyone to set it up and run tidier
on the code they are responsible for, as a learning
experience for many of the more junior developers
(and for some senior ones as well, apparently...).

Kostis Sagonas Cool Tools for Modern Erlang Program Development

PropEr

Kostis Sagonas Cool Tools for Modern Erlang Program Development

PropEr: A property-based testing tool

* Inspired by QuickCheck
* Available open source under GPL

* Has support for

- Writing properties and test case generators

?FORALL/3, ?IMPLIES, ?SUCHTHAT/3, ?SHRINK/2,
?LAZY/1, ?WHENFAIL/2, ?LET/3, ?SIZED/2,

aggregate/2, choose2, oneof/1l, ...
- Concurrent/parallel “statem” testing

* Fully integrated with the language of types and
specs

- Generators often come for free!

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Testing simple properties (1)

-module (simple props) .

-export ([delete/2]) .
%% Properties are automatically exported.
-include lib("proper/include/proper.hrl").

delete (X, L) ->
delete (X, L, []).

delete(, [], Acc) ->
lists:reverse (Acc) ;

delete (X, [X|Rest], Acc) ->
lists:reverse (Acc) ++ Rest;

delete (X, [Y|Rest], Acc) ->
delete (X, Rest, [Y|Acc]).

prop delete() ->
?FORALL ({X,L}, {integer(),list(integer())},
not lists:member (X, delete(X,L))).

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Testing simple properties (2)

%% Testing the base64 module:
3% encode should be symmetric to decode:

prop enc _dec() ->
?FORALL (Msg, union([binary(), list(range(1,255))1]),
begin
EncDecMsg = baseb64:decode (base64:encode (Msqg)),
case 1is binary(Msg) of

true -> EncDecMsg =:= Msqg;
false -> EncDecMsg =:= list to binary (Msg)
end
end) .

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Automatically testing specs

-module (specs) .
-export ([divide/2, filter/2, max/1]).

-spec divide (integer (), integer()) -> integer().
divide (A, B) ->
A div B.

-spec filter (fun((T) -> term()), [T]) -> [T].
filter (Fun, List) ->
lists:filter (Fun, List).

-spec max([T]) -> T.

max (List) ->
lists:max(List).

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Automatically using types as generators

* We want to test that array:new/0 can handle
any combination of options

* Why write a custom generator (which may rot)?
* We can use the type in that file as a generator!

-type array opt() :: 'fixed’ | non neg integer()

| {’default’, term()}

| {’ £fixed’, boolean|()}

| {'size’, non neg integer()}.
-type array opts() :: array opt() | [array opt()].

-module (types) .
-include lib("proper/include/proper.hrl").

prop new array opts() ->
?FORALL (Opts, array:array opts(),

array:is_array (array:new(Opts))) .
Kostis Sagonas Cool Tools for Modern Erlang Program Development

CED

Kostis Sagonas Cool Tools for Modern Erlang Program Development

CED: Concurrency Error Detector

* Detects some concurrency errors (or verifies their
absence) by controlling process interleavings

- Systematically explores program state space
* Uses existing tests to detect
- Exceptions (due to race conditions)

- Assertion violations
- Deadlocks

* Can consistently reproduce an erroneous
execution

Kostis Sagonas Cool Tools for Modern Erlang Program Development

CED: Example

-module (test) .
-export ([foo/0]) .

foo() >
process flag(trap exit, true),
Pid = spawn(fun bar/0),
link (Pid),
receive
{"EXIT', Pid, normal} -> ok
end.

bar() ->
ok.

Kostis Sagonas Cool Tools for Modern Erlang Program Development

CED

File Edit Module Run

Modules

fhome/mariaftest.erl i [
) _) Ertivek Process interleaving

Analyze

CED

File Edit Module Run

fhamefmariaftest.er
fhome/maria, rl N module(test).
2
3 -export([foos0]).

4

] ﬁﬁ'ﬂ»ﬂ -1
process_flag(trap exit, true),
Pid = spawn(fun bar/0),
Link (Pid),
receive

{'EXIT', Pid, normall -= ok

end.

CED

File Edit Module Run

Modules Source

fhome/mariajtest.erl . .
Errors Process interleaving

Deadlock Process P1 sets flag "trap_exit™ to “true’
Pl Process P1 spawns process PL.1
Process P1.1 exits (normal)
Process P1 links to nonexisting process

Process P1 blocks

Compiling instrumented code...
Running analysis...
Analysis complete (checked 2 interleavings i1n Om®.69s):

Found 1 erronecus interleaving(s).
i

CED

File Edit Module Run

Modules

fhome/mariajtest.erl . .
Errors Process interleaving

Deadlock Process P1 sets flag "trap_exit™ to “true’
Pl Process P1 spawns process PL.1
Process P1.1 exits (normal)
Process P1 links to nonexisting process

Process P1 blocks

Error type : Deadlock
Blocked processes : Pl

CED: Future extensions

* Use partial order reduction to speed up execution
- by avoiding redundant interleavings
* Allow selective instrumentation

* Enhance compatibility with eunit & common_test

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Concluding remarks

Described the uses of some tools for modern Erlang
program development:

Dialyzer: Automatically identifies bugs or issues in ths
code that need to be fixed

Typer: Displays/adds type information to programs
Tidier: Cleans up Erlang source code
Proper: Performs semi-automatic property based testing

CED: Systematically runs a test suite under all/some
process inter-leavings

Kostis Sagonas Cool Tools for Modern Erlang Program Development

Where can | find these tools?

Dialyzer & Typer
- They are part of Erlang/OTP
Tidier
- Use of the tool is free via tidier's web site

http://tidier.softlab.ntua.gr/
- The tool is also available by purchasing a license

Proper & CED

- They are open source

https://github.com/manopapad/proper/
https://github.com/mariachris/CED/

Kostis Sagonas Cool Tools for Modern Erlang Program Development

A team effort

Dialyzer

- Tobias Lindahl (UU/Klarna)

- Maria Christakis & Stavros Aronis (NTUA)
Typer

- Tobias Lindahl & Bingwen He (UU)
Tidier

- Thanassis Avgerinos (NTUA/CMU)
Proper

- Manolis Papadakis & Eirini Arvaniti (NTUA)
CED

- Alkis Gotovos & Maria Christakis (NTUA)

Kostis Sagonas Cool Tools for Modern Erlang Program Development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 46
	Slide 47
	Slide 48
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

