
PROCESS-STRIPED
BUFFERING WITH

GEN_STREAM
A NEW BEHAVIOUR PROPOSED FOR R15A

JAY NELSON

HTTP://WWW.DUOMARK.COM/

@DUOMARK

Friday, March 25, 2011

http://www.duomark.com
http://www.duomark.com

WIDEFINDER (TIM BRAY’S* CONCURRENCY CHALLENGE)

COUNT WEBPAGE VISIT FREQUENCY

~10 LINES OF RUBY

WANTED TO SCALE TO MULTI-CORE WITHOUT EFFORT

*HTTP://WWW.TBRAY.ORG/ONGOING/WHEN/200X/
2007/09/20/WIDE-FINDER

GENESIS

Friday, March 25, 2011

WIDEFINDER RESULTS

ERLANG FARED POORLY (INITIALLY)

TEXT I/O PERFORMANCE WAS LACKING

CONCERTED EFFORT BY ERLANGERS

 RESULT = OVER 350 LINES OF CODE

(VINOSKI, CAOYUAN AND OTHERS)

Friday, March 25, 2011

COMMON PATTERN

PATTERN EMERGED IN ERLANG SUBMISSIONS

BINARY READ FILE

FIND LINE BREAKS

DISTRIBUTE LINES

SEEMED SIMPLE, INVOLVED HUNDREDS OF SLOC

MIRRORED MY EARLIER EXPERIMENTS WITH BINARIES

CAN’T ASSUME BINARY FITS IN MEMORY

Friday, March 25, 2011

WIDEFINDER2 (ASIDE)

FINAL WIDEFINDER2 SOLUTIONS ARE MOSTLY C

ULTIMATE WINNER OF WIDEFINDER2

HTTP://WWW.1024CORES.NET/

BLOG IS A GOOD READ ON CONCURRENCY ISSUES

Friday, March 25, 2011

http://www.1024cores.net
http://www.1024cores.net

GEN_STREAM

Friday, March 25, 2011

CONCEPT

BUILT ON GEN_SERVER

MAINTAINS AN INTERNAL “MATRIX” OF BUFFERS

EACH COLUMN IS A PROCESS

EACH CELL IS A “BLOCK” OF MEMORY

SERIAL STREAM IS STRIPED ACROSS PROCESSES

ADJACENT SEGMENTS ARE IN DIFFERENT PROCESSES

COLUMN REFILLS INTERLEAVE WITH REQUESTS

Friday, March 25, 2011

CONCEPT (CONT.)

Friday, March 25, 2011

EXAMPLE API USAGE

 {ok, Pid} =
 gen_stream:start_link([{stream_type,
 {binary, BinaryInMemory},
 {num_procs, 4},
 {chunks_per_proc, 3}]);
 read_all(Pid).

 read_all(Pid) ->
 case gen_stream:next_block(Pid) of
 {block, Block} ->
 process_block(Block),
 read_all(Pid);
 {end_of_stream} ->
 gen_stream:stop(Pid)
 end.

Friday, March 25, 2011

IMPLEMENTATION

START / START_LINK STREAM_TYPE OPTIONS (REQ’D)

{stream_type, {binary, Bin::binary()}}

{stream_type, {file, FileName::string()}}

{stream_type, {behaviour, Mod::atom(),
ModArgs::list()}}

DETERMINES SOURCE DATA TYPE

BUILT-INS USE SUB-BINARIES WHERE POSSIBLE

Friday, March 25, 2011

IMPLEMENTATION (CONT.)

START / START_LINK BUFFER SIZING OPTIONS

{num_procs, pos_integer()} => concurrency

{chunks_per_proc, pos_integer()} => stacked buffers

{chunk_size, pos_integer()} => single buffer size

{block_factor, pos_integer()} => # records per buffer

LIMIT MAXIMUM MEMORY USAGE

ALLOW PACKING OF SMALL DATA

DEFINE CONCURRENT DATA LOADING

Friday, March 25, 2011

IMPLEMENTATION (CONT.)

START / START_LINK REPLAY OPTIONS

{is_circular, boolean()} => continuous data stream

START / START_LINK TRANSFORM CHUNK OPTIONS

{x_mfa, {module(), atom(), list()}}

{x_fun, fun()}

CONVERTS DATA CONCURRENTLY AS IT IS LOADING

Friday, March 25, 2011

BEHAVIOUR INTERFACE

behaviour_info(callbacks) ->
 [
 {init, 1}, % Creates ModState
 {stream_size, 1}, % may be ‘is_circular’
 {inc_progress, 2}, % Seen + ThisChunkSize
 {extract_block, 5},
 {extract_final_block, 5},
 {terminate, 2},
 {code_change, 3}
];

Friday, March 25, 2011

EXTRACT_BLOCK/5

MODULE STATE (FROM MODULE:INIT() CALL)

POSITION (OFFSET FROM START OF STREAM)

NUMBER OF BYTES TO PRODUCE

CHUNK SIZE (NUMBER OF BYTES IN A CHUNK)

BLOCKING FACTOR (E.G., 10 CHUNKS PER BLOCK)

Friday, March 25, 2011

EXTRACT_FINAL_BLOCK/5

SAME PARAMETERS AS EXTRACT_BLOCK/5

NUMBER OF BYTES IS CAPPED TO STREAM_SIZE

GEN_STREAM HANDLES CIRCULARITY

Friday, March 25, 2011

DYNAMICS

INIT/1 - INSTANTIATES INTERNAL PROCESSES

SEND {next_block, self()} TO EACH PROCESS

CLIENT REQUESTS gen_stream:next_block(Pid)

CLIENT AND FILL BUFFER REQUESTS INTERLEAVE

IF BUFFER EMPTY, CLIENT REQUEST IS IMMEDIATE FILL

FETCH, RETURN AND MESSAGE SELF TO FILL BUFFER

Friday, March 25, 2011

IMPLICATIONS

ALWAYS REPRESENTS A SERIAL, ORDERED STREAM

DESIGNED FOR PULL SEMANTICS (PUSH CAN OVERFLOW)

EQUIVALENT TO A COMPREHENSION ON EXTERNAL DATA

CAN IMPLEMENT “INFINITE COMPREHENSIONS”

MAIN CONCURRENCY IS OVERLAPPED DATA FETCHES

SECONDARY CONCURRENCY IN REFILLING BUFFERS

CONCURRENT “ON-THE-FLY” TRANSFORMATIONS

Friday, March 25, 2011

USER CHOICES

STREAM DYNAMICS

RESOURCES CONSUMED: MEMORY, PROCESSES

DATA PROCESSING MODEL

DATA GRANULARITY / ELEMENT BLOCKING

ARCHITECTURAL CHOKE POINTS

THROTTLE DATA TIMING / THROUGHPUT

ADAPTIVELY CONTROLLED ON EACH INSTANTIATION

Friday, March 25, 2011

PROMISE
(HOPE?)

Friday, March 25, 2011

EFFICIENT TEXT FILES

COVERS THE WIDEFINDER CODE EXAMPLES

BINARY BLOCKS OF TEXT

ALLOWS VARIABLE CHUNK SIZES

USER-DEFINED x_mfa OR x_fun TO BREAK BLOCKS

OPTIONALLY ELIMINATE OR FILTER DATA BLOCKS

COULD ALSO COMPRESS / DECOMPRESS

ANY DATA TRANSFORMATION

Friday, March 25, 2011

FIXED-SIZE RECORDS

EXTREMELY EFFICIENT FIXED LENGTH RECORD LOADING

PREDICTIVE LOCATIONS ALLOW FULL CONCURRENCY

DATA CAN FLOW THROUGH BUFFERS AS BINARIES

INDEX GENERATION (RECORDS AND LOCATIONS)

BULK-LOADING OF VERY SHORT RECORDS

block_factor LOADS MULTIPLE RECORDS PER CHUNK

TRANSFORM CAN SPLIT TO A LIST OF SUB-BINARIES

Friday, March 25, 2011

BUFFERING

ORIGINAL GOAL OF THE PATTERN

ON REFLECTION PROBABLY LEAST USEFUL FEATURE

I/O ALREADY BUFFERED AT LEAST TWICE

HTTP://SNA-PROJECTS.COM/KAFKA/DESIGN.PHP

FROM LINKEDIN’S KAFKA MESSAGING

Friday, March 25, 2011

http://sna-projects.com/kafka/design.php
http://sna-projects.com/kafka/design.php

STREAM IDIOM

CONCISE, EASY-TO-USE INTERFACE

BINARY, FILE OR FUNCTIONAL GENERATION

(FUTURE CONTINUATION-BASED OPTION)

INFINITE DATA / LAZY DATA GENERATION

STANDARDIZES ALGORITHMS TO “UNITS OF WORK”

ARCHITECTURAL LEVEL COMPREHENSIONS

EXTENDS MAPPING BEYOND MEMORY SIZE

Friday, March 25, 2011

SEQUENCING EVENTS

STREAMS CAN BE SEQUENTIALLY ORDERED “EVENTS”

REPRODUCIBLE TESTING SCENARIOS

SCRIPTED EVENTS CAN DRIVE STATE MACHINES

SCRIPTING AS AN ARCHITECTURAL PATTERN

POOLED SOURCE OF SLOW TO GENERATE SEQUENCES

BEWARE THAT NEXT_BLOCK MAY TIMEOUT

Friday, March 25, 2011

TESTING

MEMORY EFFICIENT, REPEATABLE EVENTING

LARGE EXTERNAL SOURCE OF TEST EXAMPLES

GENERATED TEST CASES VIA A MODULE

INFINITE STREAMS OF DATA (CIRCULAR OR NOT)

INFINITE RANDOM SAMPLING FROM A SET

STRESS TESTING / MEMORY LEAK IDENTIFICATION

DYNAMICALLY SCRIPTED EVENTING

Friday, March 25, 2011

FEEDBACK

CODE IS COOKING IN ‘PU’ ON GITHUB: ERLANG/OTP

jn/gen_stream (stdlib) (730c7fd)

WILL BE AVAILABLE AT HTTP://WWW.DUOMARK.COM/

EASIER TO LOAD FROM THE SHELL

PLEASE TRY IT, GIVE FEEDBACK -- GOOD OR BAD

DEMAND ACCEPTANCE FROM YOU SWEDISH OTP REP!!

Friday, March 25, 2011

http://www.duomark.com
http://www.duomark.com

