
The other side of
functional programming
Haskell: purity, types, and a damn good time

In the beginning

Haskell was developed by academics to unify
many streams of research

Committee began work in 1987

Haskell Report 1.0 published April 1, 1990

Comparable in age with Erlang

Principal concerns

Laziness

Purity

Strong, static types

Being lazy with style

Laziness

The original unifying theme of the designers

Evaluate an expression when its result is needed

Evaluate only the minimum needed

A simple lazy example

A simple Haskell function definition

square x = x * x

Define the name square

Give it a free variable x

The function body follows the =

Evaluate in a lazy world

What is the result of square 3 ?

The number 9 ?

Or the unevaluated expression 3 * 3 ?

(It’s the latter)

When do we evaluate?

When does the expression 3 * 3 turn into
something meaningful?

For instance, when we need to print its result

Evaluation is driven by need

Often referred to as call-by-need

Contrast with the more familiar call-by-value

Laziness as default

Laziness is pervasive in Haskell code

But sometimes it is not desirable

Option: use strict evaluation when necessary

Many strict languages provide optional laziness

The apparent gulf isn’t so big after all

Purity is the new black

Purity

Haskell data is immutable

Functions are pure

Only affected by their inputs

Not subject to mutable global state

(Again, these are defaults: mutability is available as an option)

Why purity?

What’s a side effect?

Mutating global state

Performing I/O

Remember laziness?

Evaluation by need

Laziness and side effects don’t mix!

Laziness needs purity

Haskell chose laziness by default

Therefore purity was inescapable

This has big consequences

Composability: glue functions together

Safety: functions are black boxes

Arguably a more important choice than laziness!

Adventures with types

Strong static types

Valid Haskell expressions are assigned types at
compile time

a :: String

a = “some text”

The :: says that a has the type String

This is called a type annotation

Wait ... static types?

Aren’t we supposed to hate static types?

Didn’t types cause us RSI in Java and C++?

Wasn’t that part of why we escaped to the
dynamically typed languages?

Crummy languages give static types a bad name

Yes, static types!

A Haskell compiler infers the type of an expression

It does this automatically

The type annotations that you’ve seen are optional

Handy for documentation, but superfluous

Simple use of types

Any sensible language will reject stuff like this

1 + “3foo”

(Notable exception: Perl)

Dynamic languages barf at runtime

Languages like Haskell reject at compile time

Pattern matching

Here’s the classic way to calculate a list’s length

length [] = 0

length (x:xs) = 1 + length xs

We’ve defined a function using two equations

Choose which to use by input structure

Matching on structure

If the input list is empty, the length is 0

length [] = 0

If the input matches the list constructor :, bind
the name xs to the list’s tail and recurse

length (x:xs) = 1 + length xs

Typing a list
What is the type of length?

length :: [a] → Int

The [a] above means “a list of values of some
unknown type a”

The → means “returns”

In other words, we have a function that does not
know or care about the elements of its input list

Why use static types?

Static types are about more than catching
mistakes

They let the compiler make complex decisions
about the program’s behaviour

User-defined containers
Here’s a widely used Haskell type

data Maybe a = Just a

 | Nothing

We can pattern-match to inspect the structure of a
user-defined type

isJust (Just x) = True

isJust Nothing = False

Algebraic data types

data ClientError =

 BadRequest

 | Unauthorized

 | Forbidden

 | NotFound

 ...

What does this buy?

If my function takes a HttpResponse

The compiler guarantees that I’ll never be given
a HttpRequest

It guarantees that I’ll never see an unknown
HttpResponse

It warns me if a pattern match omits a valid
response

Safety with types

Static types give stronger guarantees than testing

A simple example:

“I know my function can never receive an
argument of an invalid type”

More ambitious:

“This code can never perform I/O”

More serious type safety

We can omit features that other languages bake in

Ship them as libraries instead

A recent example:

Java-style checked exceptions as a library

Throwable exceptions are inferred

More serious types

We can model and enforce complex behaviour

Examples:

Information only flows from less secure to more
secure code

Communicating processes follow a well-defined
messaging protocol

Real world concerns

Performance

Haskell is ranked #3 on the Alioth Shootout

Usually within 1x to 5x of C’s performance

Great profiling tools help with tuning

It’s easy to write fast, concise Haskell

Community knowledge of how is a bit scattered

Going native

Haskell has a beautiful FFI

Call into and out of C code easily

Nifty libraries for other languages

Interop with .NET

Act as an Erlang node

Concurrency
Haskell has a fantastic concurrent runtime

Works with multiple cores

Millions of concurrent threads

Advanced, but easy to use programming model

The default choices of immutable data and pure
functions really help to write correct, scalable code

Thread synchronisation

Software Transactional Memory

Database-like transactional concurrency to
regular code

Much safer than mutexes

Strongly typed message channels

Networked message support as a library

Parallel terminology

Parallel and concurrent programming are different

Parallel: how do I get one answer faster?

Concurrent: how do I do 80,000 different things
per second?

Parallel programming

Mature support for making pure code parallel

Development version of GHC scales well on
modern multicore boxes

Exciting research abounds

Nested data parallel vector code

GPU offload

Testing and assurance

The famous QuickCheck library arose in Haskell

Randomised property-based testing

Beats the pants off unit tests when applicable

Traditional unit testing libraries available too

Excellent code coverage analysis tools

Libraries

Over 1,000 libraries on http://hackage.haskell.org/

Game engines, bioinformatics, networking,
database integration, music, compiler tools, ...

Single-command install of any library and its
dependencies

http://hackage.haskell.org
http://hackage.haskell.org

Community

The best language community I know of

Stellar researchers, informed OSS hackers

Atmosphere is friendly, welcoming, and smart

Notable absence of rock stars

#haskell is 5th biggest channel on Freenode

Many great online learning resources

Thank you for your time!

