The other side of
functional programming

Haskell: purity, types, and a damn good time




INn the beginning

* Haskell was developed by academics to unify
many streams of research

* Committee began work in 1987

* Haskell Report 1.0 published April 1, 1990

% Comparable in age with Erlang




Principal concerns

% [Laziness

* Purity

% Strong, static types




Being lazy with style




| azIness

* The original unifying theme of the designers

* Evaluate an expression when its result is needed

* Evaluate only the minimum needed




A simple lazy example

* A simple Haskell function definition
Sduares Xt =X F+~X

* Define the name square

* Give it a free variable x

% The function body follows the =




Evaluate In a lazy world

* What is the result of square 3 ?
* The number 9 ?

% Or the unevaluated expression 3 * 3 7

* (It’s the latter)




When do we evaluate”

* When does the expression 3 * 3 turn into
something meaningful?

* For instance, when we need to print its result
* Evaluation is driven by need
% Often referred to as call-by-need

% Contrast with the more familiar call-by-value




| azIness as gerault

* Laziness Is pervasive in Haskell code
* But sometimes it is not desirable

% Option: use strict evaluation when necessary

* Many strict languages provide optional laziness

* The apparent gulf isn’t so big after all




Purity Is the new black




Purity

* Haskell data is immutable
* Functions are pure
* Only affected by their inputs

* Not subject to mutable global state

(Again, these are defaults: mutability is available as an option)




Why purity?

* What’s a side effect?
* Mutating global state
% Performing I/O

% Remember laziness?
* Evaluation by need

% Laziness and side effects don’t mix!




| aziness needs purity

% Haskell chose laziness by default
* Therefore purity was inescapable

* This has big conseguences
% Composability: glue functions together
* Safety: functions are black boxes

* Arguably a more important choice than laziness!




Adventures with types




Strong static types

* Valid Haskell expressions are assigned types at
compile time

=5 s Ao EIC)
a “some text”

* The :: saysthat a hasthetype String

* This Is called a type annotation




Wait ... static types”?

* Aren’t we supposed to hate static types?
* Didn’t types cause us RSl in Java and C++?

* Wasn’t that part of why we escaped to the
dynamically typed languages?

% Crummy languages give static types a bad name




Yes, static types!

* A Haskell compiler infers the type of an expression
* |t does this automatically
* The type annotations that you’ve seen are optional

% Handy for documentation, but superfluous




Simple use of types

* Any sensible language will reject stuff like this

S e S 1 2 © ] O T

(Notable exception: Perl)

* Dynamic languages barf at runtime

* Languages like Haskell reject at compile time




Pattern matching

* Here’s the classic way to calculate a list’s length
length [] = 0
length (x:xs) = 1 + length Xs

* We’ve defined a function using two equations

% Choose which to use by input structure




Vlatching on structure

* If the input list is empty, the length is O
length [] = 0

* If the input matches the list constructor :, bind
the name xs to the list’s tail and recurse

length (x:xs) 1l + length Xxs




lyping a list

* What is the type of 1length?
et s s Ras] s e SETE

* The [a] above means “a list of values of some
unknown type a”

% The @ means “returns”

* |n other words, we have a function that does not
know or care about the elements of its input list




Why use static types”?

% Static types are about more than catching
mistakes

* They let the compiler make complex decisions
about the program’s behaviour




User-defined containers

* Here’s a widely used Haskell type
data Maybe a = Just a
| Nothing

* We can pattern-match to inspect the structure of a
user-defined type

1sJust (Just Xx)

1sJust Nothing




Algebraic data types

data ClientError =
BadRequest
Unauthorized
Forbidden

NotFound




What does this buy”

* |f my function takes a HttpResponse

* The compiler guarantees that I'll never be given
da HttpRequest

* It guarantees that I’ll never see an unknown
HttpResponse

* It warns me if a pattern match omits a valid
response




Safety with types

% Static types give stronger guarantees than testing
* A simple example:

* “| know my function can never receive an
argument of an invalid type”

% More ambitious:

* “This code can never perform |/O”




\Vlore serious type safety

* We can omit features that other languages bake in
* Ship them as libraries instead

* A recent example:
* Java-style checked exceptions as a library

% Throwable exceptions are inferred




\Vlore serious types

* We can model and enforce complex behaviour
* Examples:

* Information only flows from less secure to more
secure code

% Communicating processes follow a well-defined
messaging protocol




Real world concerns




Performance

* Haskell is ranked #3 on the Alioth Shootout
% Usually within 1x to 5x of C’s performance

% Great profiling tools help with tuning

* |t’s easy to write fast, concise Haskell

¥ Community knowledge of how is a bit scattered




Going native

* Haskell has a beautiful FFlI

% Call into and out of C code easily
* Nifty libraries for other languages

* Interop with .NET

* Act as an Erlang node




Concurrency

% Haskell has a fantastic concurrent runtime
* Works with multiple cores
% Millions of concurrent threads

* Advanced, but easy to use programming model

* The default choices of immutable data and pure
functions really help to write correct, scalable code




Thread synchronisation

% Software Transactional Memory

* Database-like transactional concurrency to
regular code

% Much safer than mutexes
* Strongly typed message channels

* Networked message support as a library




Parallel terminology

* Parallel and concurrent programming are different
* Parallel: how do | get one answer faster?

% Concurrent: how do | do 80,000 different things
per second?




Parallel programming

* Mature support for making pure code parallel

* Development version of GHC scales well on
modern multicore boxes

* EXxciting research abounds

* Nested data parallel vector code

* GPU offload




lesting and assurance

* The famous QuickCheck library arose in Haskell

* Randomised property-based testing
* Beats the pants off unit tests when applicable
* Traditional unit testing libraries available too

* Excellent code coverage analysis tools




| Ibraries

% Over 1,000 libraries on http://hackage.haskell.org/

* Game engines, bioinformatics, networking,
database integration, music, compiler tools, ...

* Single-command install of any library and its
dependencies



http://hackage.haskell.org
http://hackage.haskell.org

Community

* The best language community | know of

* Stellar researchers, informed OSS hackers
* Atmosphere is friendly, welcoming, and smart
* Notable absence of rock stars

* #haskell is 5th biggest channel on Freenode

* Many great online learning resources




Thank you for your time!




