
Riak Core
An Erlang Distributed Systems Toolkit

Andy Gross (@argv0)
Basho Technologies

SF Bay Erlang Factory 2011

Déjà vu

• 1999, Akamai: Large-scale log aggregation:
consistent hashing, cluster membership,
node monitoring

• 2005, Apple: Distributed filesystem:
consistent hashing, cluster membership,
node monitoring

• 2007, Mochi Media: Various apps: cluster
membership, node monitoring

Riak Core

• Toolkit for writing highly-available
distributed systems (based on Dynamo)

• Foundation of Riak KV and Riak Search

• ~8000 LOC

• Tested, production ready

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

VNode Master

VNode VNode VNode

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

Storage
Backend

Storage
Backend

Storage
Backend

monitoring

cluster
config

debugging

utilities

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

VNode Master

VNode VNode VNode

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

Storage
Backend

Storage
Backend

Storage
Backend

monitoring

cluster
config

debugging

utilities

Consistent Hashing

• Hashing technique that suffers minimal
reshuffling when # of buckets changes

• Tolerant of divergent client views

• Coordinates both replica selection and
replication

Consistent Hashing

N/R/W Values

• N = number of replicas to store (on
distinct nodes)

• R = number of replica responses needed
for a successful read (specified per-request)

• W = number of replica responses needed
for a successful write (specified per-
request)

N/R/W Values

N/R/W Values

Vector Clocks

• Reasoning about time and causality in
distributed systems is hard

• Integer timestamps don’t necessarily
capture causality

• Vector clocks provide a happens-before
relationship between two events

Vector Clocks

• Simple data structure: [(ActorID,Counter)]

• All data has an associated vector clock,
actors update their entry when making
changes

• ClockA happened-before ClockB if all
actor-counters in A are less than or equal
to those in B

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

Virtual Node Master

• Receives messages from coordinating FSMs

• Translates partition numbers to local PIDs
and dispatches commands to individual
vnodes

• One vnode_master per virtual node type
(Riak KV, Riak Search)

Virtual Nodes

• One Erlang process per partition in the
consistent hashing ring

• Receives work for its portion of the hash
space

• Fundamental unit of replication, fault
tolerance, concurrency

Virtual Node Behavior

Writing VNode
Modules

• Define commands and handlers

• Define handoff behavior

• Start a riak_core_vnode_master for the
vnode module

• riak_core:register_vnode_module(VNodeMod)

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

Node/Service Watcher

• gen_event process for monitoring nodes
and local services

• Allows administrative removal of nodes

• Allows distributed applications to define
services - service availability info is
synchronized among nodes

• Used in the calculation of fallback nodes

Ring Manager

• Stores local copy of gossiped ring data

• Optimized for frequent reads, infrequent
writes (using mochiglobal)

• Client applications manipulate ring data,
Riak Core handles gossip/conflict
resolution

Ring Event Handler

• gen_event that receives notifications on
ring changes and broadcasts to subscribers

• Notifications of cluster membership
changes

• Notifications of metadata changes

Handoff

• VNodes periodically check to see if they’re
not on their “home” node and attempt
handoff.

• Riak Core manages handoff connection
management, your app handles encoding/
decoding.

• Handoff is optional.

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

Other Utilities

• System monitoring

• Statistical data structures

• Utilities for

• inter-node communication

• tracing/debugging

• vector clock/preference list manipulating

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

KV Request FSMs

Bitcask

HTTP Protobufs Riak KV

VNode Master

VNode VNode VNode

Storage
Backend

Storage
Backend

Storage
Backend

node
watcher

node event
handler

ring
event handler

handoff
manager

ring
manager

handoff
receiver

consistent
hashing

vector
clocks

merkle
trees

bloom
filters

monitoring

cluster
config

debugging

utilities

KV FSMs Search FSMs

Bitcask merge_index

SOLR Protobufs Riak Search

VNode VNode VNode

Future Directions

• Easier creation of new Riak Core based
apps

• HTTP APIs for more functionality

• Stronger consistency support?

Greenspun’s Tenth Rule

 “Any sufficiently complicated C or
Fortran program contains an ad hoc,
informally-specified, bug-ridden, slow

implementation of half of Common Lisp”

Armstrong’s Corollary

 “Any sufficiently complicated concurrent
program in another language contains an
ad hoc, informally-specified, bug-ridden,
slow implementation of half of Erlang”

Basho’s Corollary

 “Any sufficiently complicated Erlang
distributed system contains an ad hoc,
informally-specified, bug-ridden, slow
implementation of half of Riak Core”

Thanks!

