
Riak Core
An Erlang Distributed Systems Toolkit

Andy Gross (@argv0)
Basho Technologies

SF Bay Erlang Factory 2011



Déjà vu

• 1999,  Akamai:  Large-scale log aggregation: 
consistent hashing, cluster membership, 
node monitoring

• 2005,  Apple:  Distributed filesystem:  
consistent hashing, cluster membership, 
node monitoring

• 2007, Mochi Media:  Various apps: cluster 
membership, node monitoring



Riak Core

• Toolkit for writing highly-available 
distributed systems (based on Dynamo)

• Foundation of Riak KV and Riak Search

• ~8000 LOC

• Tested, production ready
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Consistent Hashing

• Hashing technique that suffers minimal 
reshuffling when # of buckets changes

• Tolerant of divergent client views 

• Coordinates both replica selection and 
replication



Consistent Hashing



N/R/W Values

• N = number of replicas to store (on 
distinct nodes)

• R = number of replica responses needed 
for a successful read (specified per-request)

• W = number of replica responses needed 
for a successful write (specified per-
request)



N/R/W Values



N/R/W Values



Vector Clocks

• Reasoning about time and causality in 
distributed systems is hard

• Integer timestamps don’t necessarily 
capture causality

• Vector clocks provide a happens-before 
relationship between two events



Vector Clocks

• Simple data structure:  [(ActorID,Counter)]

• All data has an associated vector clock, 
actors update their entry when making 
changes

• ClockA happened-before ClockB if all 
actor-counters in A are less than or equal 
to those in B
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Virtual Node Master

• Receives messages from coordinating FSMs

• Translates partition numbers to local PIDs 
and dispatches commands to individual 
vnodes

• One vnode_master per virtual node type 
(Riak KV, Riak Search)



Virtual Nodes

• One Erlang process per partition in the 
consistent hashing ring

• Receives work for its portion of the hash 
space

• Fundamental unit of replication, fault 
tolerance, concurrency



Virtual Node Behavior



Writing VNode 
Modules

• Define commands and handlers

• Define handoff behavior

• Start a riak_core_vnode_master for the 
vnode module

• riak_core:register_vnode_module(VNodeMod)
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Node/Service Watcher

• gen_event process for monitoring nodes 
and local services

• Allows administrative removal of nodes

• Allows distributed applications to define 
services - service availability info is 
synchronized among nodes

• Used in the calculation of fallback nodes



Ring Manager

• Stores local copy of gossiped ring data

• Optimized for frequent reads, infrequent 
writes (using mochiglobal)

• Client applications manipulate ring data, 
Riak Core handles gossip/conflict 
resolution



Ring Event Handler

• gen_event that receives notifications on 
ring changes and broadcasts to subscribers

• Notifications of cluster membership 
changes

• Notifications of metadata changes



Handoff

• VNodes periodically check to see if they’re 
not on their “home” node and attempt 
handoff.

• Riak Core manages handoff connection 
management, your app handles encoding/
decoding.

• Handoff is optional. 
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Other Utilities

• System monitoring

• Statistical data structures

• Utilities for

• inter-node communication

• tracing/debugging

• vector clock/preference list manipulating
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Bitcask

HTTP Protobufs Riak KV
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Future Directions

• Easier creation of new Riak Core based 
apps

• HTTP APIs for more functionality

• Stronger consistency support?



Greenspun’s Tenth Rule

 “Any sufficiently complicated C or 
Fortran program contains an ad hoc, 
informally-specified, bug-ridden, slow 

implementation of half of Common Lisp”



Armstrong’s Corollary

 “Any sufficiently complicated concurrent 
program in another language contains an 
ad hoc, informally-specified, bug-ridden, 
slow implementation of half of Erlang”



Basho’s Corollary

 “Any sufficiently complicated Erlang 
distributed system contains an ad hoc, 
informally-specified, bug-ridden, slow 
implementation of half of Riak Core”



Thanks!


