Erlang: The Unintentional Neural
Network Programming Language

Erlang Factory
San Francisco — March 2011

Gene Sher

Introduction

* The Long Standing Goals of Computational
Intelligence

* Brain Is just an organic substrate based NN
* Blue Brain Project - http://bluebrain.epfl.ch/
 Computer hardware Is advancing steadily

* A programming language is needed with the
right features

* Erlang: As the NN Programming Language

http://bluebrain.epfl.ch/

Computational Intelligence
Through Genetic Algorithms and
Neural Networks

Biological Neural Network

Artificial Neural Networks

» Simulate biological Act/Output
NNs to various
degrees of precision @ @

* Directed graphs
e Parallel @
* Learn, adapt, and

generalize @ @

Sense/Input

An Artificial Neuron

Output

1. Dot product:
DP=(1*0.76) + (0*0.46)
['094] Threshold = (-1*1)

2. Activation strength: ~— ~+ =}
Output = tanh(DP+Threshold) [
15
[1] |

BiaS —_— -10F

AF:tanh
Weights:
[1’0,_]-]

[-0.76] [0.46]

Input Input

The Input Is Just a Vector

Output

1. Dot product:

DP=(0.5*1) + (0.2*1)

['029] Threshold = (0*1)

2. Activation strength:
Output = tanh(DP+Threshold)

AF:tanh
Weights:
[0.5,0.2]

[-1.1]

Input

A Neural Network

Wind Speed Later

tanh(tanh(C dot W) + tanh(WSP dot W))

[-0.94]

tanh(1*-0.76 + 0*0.46 + -1*1)
Bias
[-0.76] [0.46]

tanh(1*0.5)

tanh(0.5*2 + 1*-2)

Coordinates [0.5] Wind Speed Now

NN Learning & Plasticity
Algorithms

e Supervised
e Backpropagation
e Unsupervised
« Kohonan (Self-organizing) map

Adaptive Resonance Theory
Hebbian

- "The general idea is an old one, that any two cells or systems of cells that are repeatedly active at the same
time will tend to become 'associated’, so that activity in one facilitates activity in the other.” (Hebb 1949, p. 70)

Modulated
Evolutionary

Evolutionary Computation

Based on evolutionary principles

Stochastic search with a purpose
e Survival of the fittest
Genotype to Phenotype

Mutation and crossover

LR

George E. P. Box

* Improving productivity in a chemical process
plant at Imperial Chemical Industries Ltd.
1.Vary a setting
2.See what happens
3.777

4. Profit!!

Evolutionary Computation Flowchart

Initialize the
population

l

Create offspring
through
random variation

l

Evaluate fithess
of each candidate
solution

N

Apply selection
algorithm

Yes

Simple Genetic Algorithm Example

Simple Mutations

Genotypes Phenotypes Genotypes Phenotypes Genotypes Phenotypes

Al001olN | W 110 HEN | 1110 HHEN
B0O000 ® | | | | 0100, [M | | 1111 NN
C1010+H W 1010 I W | 1010 W W
DO1015[I MW o105 W H 0010 [| N]

Gen-1 Gen-2 Gen-3

Mutation creates
variation

Unfavarable mutations
selected against

Reproduction and
mutation occur

Crossover

Genotypes Phenotypes Genotypes Phenotypes Genotypes Phenotypes

A1001 ol | M 1011 ™EE 1011 § HE
B0O0DO ® [| [| 1101 M ™ 41101 W =
cloio+« MW | +1010 =™ 1001 T =
D0101 % I M 70101 [_ 1111 HEHEER

Gen-1 Gen-2 Gen-3

Favorable mutations
more likely to survive

... and reproduce

Simple Hill Climber

Output
1. Outputl = tanh(1*1) = 0.76
Output2 = tanh(1*-1) =-0.76

it — 2. Perturbation power!!!
tanh(1*W) Initial W = 1 Perturbation = -0.5
| want: Output == TryW=05=1-05

Outputl = tanh(0.5*1) = 0.46
Output2 = tanh(0.5*-1) = -0.46
That's closer! New W = 0.5

AF:tanh
Weights:
(W]

3. Perturbation power!!!
Perturbation = +0.2
TryW=0.7=0.5+0.2
Outputl = tanh(0.7*1) = 0.60
Output2 = tanh(0.7*-1) = -0.60

Not as good as before, New W = 0.5
1. [1] 9
2. [-]_] 4. Perturbation power!!!
Perturbation = -0.5
TryW=0=0.5-0.5
InpUt Outputl = tanh(0*1) =0 !!!

Output2 = tanh(0*-1) = 0 I!!

The right weight is O.

Evolutionary Computation

Approaches
Genetic Algorithms (John Holland, 73-75)

Population of fixed length genotypes, bit strings, evolved through perturbation/crossing

Genetic Programming (John Koza, 92)

« Variable sized chromosome based programs represented as treelike structures, with specially
crafted genetic operators

Evolutionary Strategies (Ingo Rechenberg, 73)

Normal distribution based, adaptive perturbations (self-adaptation)

Evolutionary Programming (L. & D. Fogel, 63)

Like ES, but for evolution of state transition tables for finite-state machines (FSMs)

Topology and Weight Evolving

Artificial Neural Networks
Populations and Fithess Functions

Parametric mutation operators
Topological mutation operators

Other mutation operators
» Learning Algorithms, Activation Functions

e Submodules

TWEANN Cycle

géjﬁl\lggu'aﬁon
Applyto
@ﬂ problem &

Create Calculate fitness
offspring scores

N, '4

Select fit
organisms

NN Programming Language

Necessary Features for a NN-PL

(These will sound very familiar)

Encapsulation

Concurrency through Neuron primitives
Fault detection primitives

Location transparency

Dynamic code upgrade

Erlang's Features

Encapsulation primitives
Concurrency

Fault detection primitives
Location transparency
Dynamic code upgrade

Neural Networks Through Erlang

The Topological 1:1 Mapping
oI, A w2

Monolithic NN Supervision Tree

NN

Supervisors

States & Functions

 Neuron
e {InputPIlds,OutputPlds,Ws,AF,PF}
« {U_ Ws,Output} = update weights(Input,Ws,AF,PF)
« fanout(OutputPlds,Output)
e Sensor
e {Function,OutputPIlds,Parameters}
« Sensory_Signal = sensor:Function(Parameters)
o fanout(NPlds,Sensory_Signal)
e Actuator
e {Function,InputPIlds,Parameters}

 actuator:Function(Actuator_Signal,Parameters)

Genotype Storing and Encoding

Tuple encoded
e {neuron,InputPIlds,OutputPlds,Ws,AF,PF}

Relational database friendly
Human readable
Standard directed graph vertex and edge based

Mutation operators are standard digraph
opreators

 Add/remove Neuron/Vertex

 Add/remove Synapse/Edge

Mnesia as Storage for Genotypes

 Robust and safe
o Tuple friendly

e Easy atomic mutations

 |f any part of the mutation fails, the whole
mutation Is just retracted automatically

Modular NN Topology Mapping

Modular NN Supervision Tree

Population Root Supervisor
Monitor

Modular NN

@ Supervisors
Supervisors w @ Workers @@
000000 -

What Erlang Offers to the Field of
NN Research

Augmenting topologies live

Full distribution and utilization of hardware
Fault tolerance; "stroke recovery”

1:1 mapping, from ideas to prototype systems

* NO need to overcome linguistic determinism

Switching and adding new modules, no matter what
they do, requires no rewrite thanks to message
passing

Flexibility... in everything!

DXNN: A Case Study

Memetic Algorithm Based
TWEANN

Seed NN population

HRiHRR
g

Applyto _,

&
ﬂ problem &
N
ccccccccccc X
Hill Climber .
Create Calculate fithess
offspring scores

N, "4

Select fit
organisms

Evolving Topologies
AL A2

I o G @
1

=) @ =) @ =) @

® © ©0 @
s somos s

Modular DXNN Architecture

Modular DXNN Supervision Tree

Supervisors

Seed Population

 Total first layer neurons = total # of sensors

» Total last layer neurons = output vector length
* This is usually the sum of actuator vector lengths

 Choose AF, PF... randomly from the available
lists

Complexification and Elaboration

o Start with a simple initial topology

e Add to

and elaborate on the topology during

mutation phases

* Apply parametric mutations only to the newly
created Neurons

e Scale t

ne fithess scores based on NN size

,.;':-'i"-';

T LIMBIC SYSTEM

REPTILIAN COMPLEX

DXNN Genotype

* {neuron,ld,InputPIldPs,OutputPlds,AF,PF}
e [nputPIldPs: [{PId1,W1}...{Pldn,Wn}]

 {module,ld,InputPlds,FanOut,Fanin,OutputPlds}
» {cortex,ld,Sensors,FanOut,Fanin,Actuators}

» {dxnn,ld,Cortexld,Modulelds,Neuronids}

« {available_AFs,[AF1...AFn]}
« {available_PFs,[PF1...PFn]}
» {available_SensorTypes,[S1...Sn]}

« {available ActuatorTypes,[Al...An]}
« {available MutationOperators,[MO1...MO2]}

DXNN mutation operators

» |ocal search mutation operators

perturb_weights(Weights)

* Global search mutation operators

add_subcore(Genotype)/remove_subcore(Genotype)
add_sclink(Genotype)/remove _sclink(Genotype)
add_neuron(Genotype)/remove_neuron(Genotype)
add_nlink(Genotype)/remove_nlink(Genotype)

add_bias(Genotype)/remove_bias(Genotype)
change_af(Genotype)/change plasticity(Genotype)

DXNN Platform

DXNN Benchmarks & Application

Areas
Double pole balancing

Simple food gathering

Dangerous food gathering

Predator vs prey simulations

Room navigation and new sensor acquisition
Circuit design

Time series analysis

Double Pole Balancing Setup

[P1Angle,P2ANngle,CPos]

Double Pole Benchmark

Non DXNN data taken from Table-3, Table-4 of: Faustino Gomez, Jurgen Schmidhuber, Risto Miikkulainen,: Accelerated Neural
Evolution through Cooperatively Coevolved Synapses. Journal of Machine Learning Research 9 (2008) 937-965

Double pole balancing with velocities Without velocities, without damping Without velocities, with damping
Method Evaluations Method Evaluations Method Evaluations
RWG 474329 RWG 415209 RWG 1232296
EP 307200 EP EP

CNE 22100 CNE 76906 CNE 87623
SANE 12600 SANE 262700 SANE 451612
Q-MLP 10582 Q-MLP Q-MLP

NEAT 3600 NEAT NEAT 6929
ESP 3800 ESP 7374 ESP 26342
CoSyNE 954 CoSyNE 1249 CoSyNE 3416
CMA-EX 895 CMA-EX 3521 CMA-EX 6061

DXNN 725 DXNN 2359 DXNN 2313

Artificial Life Setup

2d Robots and Sensor Types

Sensor
angle
coverage,
resolution=4

270- :
360 90 Poison

Plant

180- 90-
270 180 Predator

Ray casting
based sensors

Predator vs. Prey

Y

Evolving Hardware

Modules as general programs

e
o ? o ?
N X

OO 0O U

@ @ 2 @ @

QuadCopter Stabilization

Player/Gazebo

Prop Speeds: [P1,P2,P3

Actuators

(7T

Bipedal Gait

R Joint Angles: [R1,R2,R3
L Joint Angles: [L.1,1.2,1.3]

—

Cortex

000000

Sensors

~~~~~~~

Player/Gazebo




Time Series Analysis

(Through a sliding window)

12143423223...
—>




Coevolution

 Environment and fithess landscape Is created by
the interaction of competing species

e Arms race



UAVS & Aerial Combat

Bently — Creative Evolutiony Systems, Ch-19, Discovering Novel Fighter Combat Maneuvers: Simulating Test Pilot Creativity

Actuators

Player/Gazebo

eeds; : [P1,P2,P3,P4,A]

Cortex

Sensor Data

[L11]
AIATATATA

Sensors

Actuators

Psp 5 : [P1,P2,P3,P4,A]

Cortex
Sensor Data

[111]
AlATATATA

Sensors




Cyberwarfare

(Something like metasploit, but NN provides the parameters and chooses the tools)
DETER (NetSecTestbed) can be found at http://www.isi.deterlab.net/

Actuators

ns3 or DETER
Parameters: 1,T2,P2...]
Defender
Cortex
| | | | | Network Data
AIATATATAE™
Sensors
Actuators
ameters: [T1,P1,T2,P2...]
Attacker
Cortex
| | | | | Network Data
Q0000 Re
Sensors




Conclusion & Future Work

* Memetic vs Genetic
» Spiking neural networks and fault tolerance
* Over-the-net distribution and sensing

o Artificial life, 3d systems, distributed
processing...

e Towards more realistic simulators and
evolving greater complexity...



Thanks! Questions?

 Learn More

* Preprints available on arxiv.org
» Get the code

* Will be available on github soon
* Get in touch

e dxnn.research@gmail.com



END



