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Pre-history

• AXE programmed in PLEX

• PLEX

- programming language 
for exchanges

- proprietary

- blocks (processes) and 
signals

- in-service code upgrade

• Eri-Pascal
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1985 - 1989

Timeline

- Programming POTS/LOTS/DOTS (1885)

- A Smalltalk model of POTS

- A telephony algebra (math)

- A Prolog interpreter for the telephony algebra

- Added processes to prolog

- Prolog is too powerful (backtracking)

- Deterministic prolog with processes

- “Erlang” !!! (1986)

- ...

- Compiled to JAM code (1989)

- ... 
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The telephony algebra (1985)

idle(N)    means subscriber N is idle

on(N)      means subscriber N is on hook

...

+t(N, dial_tone) means add dial tone to A

process(A, f) :- on(A), idle(A), +t(A,dial_tone),

                       +d(A, []), -idle(A), +of(A)

• Using this notation, POTS could be described using fifteen rules. There 
was just one major problem: the notation only described how one 
telephone call should proceed. How could we do this for thousands of 
simultaneous calls?
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A -> B,C,D.
B -> x,D.
D -> y.
C -> z.

A
B,C,D
x,D,C,D
D,C,D
y,C,D
C,D
z,D
D
Y
{}

The reduction machine

A,B,C, D = nonterminals

x,y,z = terminals

To reduce X,...Y...

If X is a nonterminal replace it by it's definition

If X is a terminal execute it and then do ...Y...

5

We can interrupt this at any time 
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A -> x,y,B
B -> z,A

A
x,y,B
y,B
B
z,A
A
...

Term rewriting is last-call optimised
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one(X0) ->
    ...
    two(X1).

two(Y0) ->
    ...
    one(Y1).
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The manual
1985 (or 86)
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Running a 
program
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The prolog interpreter (1986)
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Version 1.06 
dated 1986-12-18

Earlier versions 
“lost in the mists 

of time”
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Phoning philosophers
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The Phoning Philosopher's Problem or Logic Programming for 
Telecommunications Applications

Armstrong, Elshiewy, Virding (1986)
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1988 - Interpreted Erlang

•4 days for a compiler 
rewrite

•245 reductions/sec

• semantics of language 
worked out

•Robert Virding joins 
the “team”
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1989 - The need for speed

• ACS - Dunder

- “we like the language but it’s too slow” 

- must be 40 times faster

• Mike Williams writes the

emulator (in C)

• Joe Armstrong writes the

compiler

• Robert Virding writes the

libraries
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How does the JAM work? (1)

• JAM has three global data areas

code space + atom table + scheduler queue

• Each process has a stack and a heap

- fast context switching

- non-disruptive garbage collection

• Erlang data structures are represented as tagged 
pointers on the stack and heap

13
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How does the JAM work? (2)

•Compile code into sequences of instructions that 
manipulate data structures stored on the stack 
and heap (Joe)

•Write code loader, scheduler and garbage 
collector (Mike)

•Write libraries (Robert)
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Factorial

rule(fac, 0)  -> [pop,{push,1}];                         %fac(0) -> 1;
rule(fac, _)  -> [dup,{push,1},minus,{call,fac},times].  %fac(N) -> N * fac(N-1).

run() -> reduce0([{call,fac}], [3]).

reduce0(Code, Stack) ->
    io:format("Stack:~p Code:~p~n",[Stack,Code]),
    reduce(Code, Stack).

reduce([],[X])                -> X;
reduce([{push,N}|Code], T)    -> reduce0(Code, [N|T]);
reduce([pop|Code], [_|T])     -> reduce0(Code, T);
reduce([dup|Code], [H|T])     -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T]);
reduce([{call,Func}|Code], [H|_]=Stack) -> 
    reduce0(rule(Func, H) ++ Code, Stack).
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Factorial
> fac:run(). 
Stack:[3] Code:[{call,fac}]
Stack:[3] Code:[dup,{push,1},minus,{call,fac},times]
Stack:[3,3] Code:[{push,1},minus,{call,fac},times]
Stack:[1,3,3] Code:[minus,{call,fac},times]
Stack:[2,3] Code:[{call,fac},times]
Stack:[2,3] Code:[dup,{push,1},minus,{call,fac},times,times]
Stack:[2,2,3] Code:[{push,1},minus,{call,fac},times,times]
Stack:[1,2,2,3] Code:[minus,{call,fac},times,times]
Stack:[1,2,3] Code:[{call,fac},times,times]
Stack:[1,2,3] Code:[dup,{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,2,3] Code:[{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,1,2,3] Code:[minus,{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[pop,{push,1},times,times,times]
Stack:[1,2,3] Code:[{push,1},times,times,times]
Stack:[1,1,2,3] Code:[times,times,times]
Stack:[1,2,3] Code:[times,times]
Stack:[2,3] Code:[times]
Stack:[6] Code:[]
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An early JAM compiler (1989)

fac(0) -> 1;
fac(N) -> N * fac(N-1).

rule(fac, 0) ->
    [pop,{push,1}];
rule(fac, _) ->
    [dup,
     {push,1},
     minus,
     {call,fac},
     times].
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{info,fac,1}
 {try_me_else,label1}
        {arg,0}
        {getInt,0}
        {pushInt,1}
        ret
 label1: try_me_else_fail
        {arg,0}
        dup
        {pushInt,1}
        minus
        {callLocal,fac,1}
        times
        ret
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Compiling foo() -> {abc,10}. (1)

19

pc = program counter
stop = stack top
htop = heap top

switch(*pc++){
    case 16: // push short int
        *stop++ = mkint(*pc++);
        break;
    ...
    case 20: // mktuple
        arity = *pc++;
        *htop++ = mkarity(arity);
        while(arity>0){
            *htop++ = *stop--;
            arity--;
        };
        break;

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},
ret

Byte code

16,10,20,2
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An early JAM compiler (1989)

sys_sys.erl                 18 dummy
sys_parse.erl              783 erlang parser
sys_ari_parser.erl         147 parse arithmetic expressions
sys_build.erl              272 build function call arguments
sys_match.erl              253 match function head arguments
sys_compile.erl            708 compiler main program
sys_lists.erl               85 list handling
sys_dictionary.erl          82 dictionary handler
sys_utils.erl               71 utilities
sys_asm.erl                419 assembler 
sys_tokenise.erl           413 tokeniser 
sys_parser_tools.erl        96 parser utilities
sys_load.erl               326 loader
sys_opcodes.erl            128 opcode definitions
sys_pp.erl                 418 pretty printer
sys_scan.erl               252 scanner
sys_boot.erl! ! !  59 bootstrap
sys_kernel.erl               9 kernel calls
18 files                  4544

Like the WAM with added primitives for spawning processes and message passing
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JAM improvements

•Unnecessary stack -> heap movements

•Better with a register machine

•Convert to register machine by emulating top N 
stack locations with registers

•And a lot more ...
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Alternate implementations

VEE (Virdings Erlang Engine)

• Experiment with different memory model

- Single shared heap with real-time garbage collector 
(reference counting)

•Blindingly fast message passing

BUT

• Small overall speed gain and more complex 
internals

23



© 1999-2011 Erlang Solutions Ltd.

Alternate implementations

Strand88 machine

•An experiment using another HLL as “assembler”

• Strand88 a concurrent logic language

- every reduction a process and messages as cheap as 
lists

• Problem was to restrict parallelism

BUT

• Strand's concurrency model was not good fit for 
Erlang

24
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1985-1998

25
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By 1990 things

were going

so well

that we

could

...
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Buy a train set

27
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•Distribution

•Philosophy

•OTP structure

•BEAM

•HIPE

•Type Tools

We added new stuff

•Bit syntax

•Compiling pattern 
matching

•OTP tools

•Documented way of doing 
things

28
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TEAM

29

Turbo Erlang Abstract Machine
Bogumil Hausman

•Make a new efficient implementation of Erlang

Turbo Erlang: Approaching the Speed of C
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TEAM

•New machine design

- Register machine

•Generate native code by smart 
use of GCC

•Same basic structures and 
memory design as JAM

•Threaded emulator

append([H|T], X) -> [H|append(T, X);
append([], X) -> X.

30



© 1999-2011 Erlang Solutions Ltd.

Compiling foo() -> {abc,10}. (2)

31

pc = program counter
stop = stack top
htop = heap top

    ...
    pushInt:   // push short int
        *stop++ = mkint(*pc++);
        goto *pc++;
    ...
    mkTuple:   // mktuple
        arity = *pc++;
        *htop++ = mkarity(arity);
        while(arity>0){
            *htop++ = *stop--;
            arity--;
        };
        goto *pc++;

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},
ret

Byte code

16,10,20,2

Threaded code

0x45620,10,0x45780,2

static void *lables[] = {
    ...
    &&pushInt,
    ...
    &&mkTuple,
    ...
};
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TEAM

• Significantly faster than the JAM

BUT

•Module compilation slow

•Code explosion, resultant code size too big for 
customers

SO

•Hybrid machine with both native code and 
emulator

32
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TEAM --> BEAM

Bogdan’s Erlang Abstract Machine

And lots of improvements have been made and lots 
of good stuff added

Better GC (generational), SMP, NIF’s etc. etc.

(now Björn’s Erlang abstract Machine)
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Compiling pattern matching

• Erlang semantics say match clauses sequentially

BUT

•Don’t have to if you’re smart!

•Can group patterns and save testing

The implementation of Functional Languages

Simon Peyton Jones

(old, from 1987, but still full of goodies)
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Compiling pattern matching

scan1([$\s|Cs], St, Line, Col, Toks) when St#erl_scan.ws ->
scan1([$\s|Cs], St, Line, Col, Toks) ->
scan1([$\n|Cs], St, Line, Col, Toks) when St#erl_scan.ws ->
scan1([$\n|Cs], St, Line, Col, Toks) ->
scan1([C|Cs], St, Line, Col, Toks) when C >= $A, C =< $Z ->
scan1([C|Cs], St, Line, Col, Toks) when C >= $a, C =< $z ->
%% Optimisation: some very common punctuation characters:
scan1([$,|Cs], St, Line, Col, Toks) ->
scan1([$(|Cs], St, Line, Col, Toks) ->
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Compiling pattern matching

expr({var,Line,V}, Vt, St) ->
expr({char,_Line,_C}, _Vt, St) ->
expr({integer,_Line,_I}, _Vt, St) ->
expr({float,_Line,_F}, _Vt, St) ->
expr({atom,Line,I}, _Vt, St) ->
expr({string,_Line,_S}, _Vt, St) ->
expr({nil,_Line}, _Vt, St) ->
expr({cons,_Line,H,T}, Vt, St) ->
expr({lc,_Line,E,Qs}, Vt0, St0) ->
expr({bc,_Line,E,Qs}, Vt0, St0) ->
expr({tuple,_Line,Es}, Vt, St) ->
expr({record_index,Line,Name,Field}, _Vt, St) ->
expr({bin,_Line,Fs}, Vt, St) ->
expr({block,_Line,Es}, Vt, St) ->
expr({’if’,Line,cs}, Vt, St) ->
expr({’case’,Line,E,Cs}, Vt, St0) ->
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The Erlang VM as an assembler
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• Efene

- Mariano Guerra

- http://marianoguerra.com.ar/efene/

• LFE (Lisp Flavoured Erlang)

- Robert Virding

- http://github.com/rvirding/lfe

•Reia

- Tony Arcieri

- http://reia-lang.org/

http://github.com/rvirding/lfe
http://github.com/rvirding/lfe
http://wiki.reia-lang.org/wiki/Reia_Programming_Language
http://wiki.reia-lang.org/wiki/Reia_Programming_Language
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THE END

Robert Virding, Erlang Solutions Ltd.
robert.virding@erlang-solutions.com
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