
Erlang Solutions Ltd.

© 1999-2011 Erlang Solutions Ltd.

A History of the Erlang VM
Robert Virding

© 1999-2011 Erlang Solutions Ltd.

Pre-history

• AXE programmed in PLEX

• PLEX

- programming language
for exchanges

- proprietary

- blocks (processes) and
signals

- in-service code upgrade

• Eri-Pascal

2

© 1999-2011 Erlang Solutions Ltd.

1985 - 1989

Timeline

- Programming POTS/LOTS/DOTS (1885)

- A Smalltalk model of POTS

- A telephony algebra (math)

- A Prolog interpreter for the telephony algebra

- Added processes to prolog

- Prolog is too powerful (backtracking)

- Deterministic prolog with processes

- “Erlang” !!! (1986)

- ...

- Compiled to JAM code (1989)

- ...

3

© 1999-2011 Erlang Solutions Ltd.

The telephony algebra (1985)

idle(N) means subscriber N is idle

on(N) means subscriber N is on hook

...

+t(N, dial_tone) means add dial tone to A

process(A, f) :- on(A), idle(A), +t(A,dial_tone),

 +d(A, []), -idle(A), +of(A)

• Using this notation, POTS could be described using fifteen rules. There
was just one major problem: the notation only described how one
telephone call should proceed. How could we do this for thousands of
simultaneous calls?

4

© 1999-2011 Erlang Solutions Ltd.

A -> B,C,D.
B -> x,D.
D -> y.
C -> z.

A
B,C,D
x,D,C,D
D,C,D
y,C,D
C,D
z,D
D
Y
{}

The reduction machine

A,B,C, D = nonterminals

x,y,z = terminals

To reduce X,...Y...

If X is a nonterminal replace it by it's definition

If X is a terminal execute it and then do ...Y...

5

We can interrupt this at any time

© 1999-2011 Erlang Solutions Ltd.

A -> x,y,B
B -> z,A

A
x,y,B
y,B
B
z,A
A
...

Term rewriting is last-call optimised

6

one(X0) ->
 ...
 two(X1).

two(Y0) ->
 ...
 one(Y1).

7

The manual
1985 (or 86)

8

Running a
program

© 1999-2011 Erlang Solutions Ltd.

The prolog interpreter (1986)

9

Version 1.06
dated 1986-12-18

Earlier versions
“lost in the mists

of time”

© 1999-2011 Erlang Solutions Ltd.

Phoning philosophers

10

The Phoning Philosopher's Problem or Logic Programming for
Telecommunications Applications

Armstrong, Elshiewy, Virding (1986)

© 1999-2011 Erlang Solutions Ltd.

1988 - Interpreted Erlang

•4 days for a compiler
rewrite

•245 reductions/sec

• semantics of language
worked out

•Robert Virding joins
the “team”

11

© 1999-2011 Erlang Solutions Ltd.

1989 - The need for speed

• ACS - Dunder

- “we like the language but it’s too slow”

- must be 40 times faster

• Mike Williams writes the

emulator (in C)

• Joe Armstrong writes the

compiler

• Robert Virding writes the

libraries

12

© 1999-2011 Erlang Solutions Ltd.

How does the JAM work? (1)

• JAM has three global data areas

code space + atom table + scheduler queue

• Each process has a stack and a heap

- fast context switching

- non-disruptive garbage collection

• Erlang data structures are represented as tagged
pointers on the stack and heap

13

© 1999-2011 Erlang Solutions Ltd. 14

© 1999-2011 Erlang Solutions Ltd.

How does the JAM work? (2)

•Compile code into sequences of instructions that
manipulate data structures stored on the stack
and heap (Joe)

•Write code loader, scheduler and garbage
collector (Mike)

•Write libraries (Robert)

15

© 1999-2011 Erlang Solutions Ltd.

Factorial

rule(fac, 0) -> [pop,{push,1}]; %fac(0) -> 1;
rule(fac, _) -> [dup,{push,1},minus,{call,fac},times]. %fac(N) -> N * fac(N-1).

run() -> reduce0([{call,fac}], [3]).

reduce0(Code, Stack) ->
 io:format("Stack:~p Code:~p~n",[Stack,Code]),
 reduce(Code, Stack).

reduce([],[X]) -> X;
reduce([{push,N}|Code], T) -> reduce0(Code, [N|T]);
reduce([pop|Code], [_|T]) -> reduce0(Code, T);
reduce([dup|Code], [H|T]) -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T]);
reduce([{call,Func}|Code], [H|_]=Stack) ->
 reduce0(rule(Func, H) ++ Code, Stack).

16

© 1999-2011 Erlang Solutions Ltd.

Factorial
> fac:run().
Stack:[3] Code:[{call,fac}]
Stack:[3] Code:[dup,{push,1},minus,{call,fac},times]
Stack:[3,3] Code:[{push,1},minus,{call,fac},times]
Stack:[1,3,3] Code:[minus,{call,fac},times]
Stack:[2,3] Code:[{call,fac},times]
Stack:[2,3] Code:[dup,{push,1},minus,{call,fac},times,times]
Stack:[2,2,3] Code:[{push,1},minus,{call,fac},times,times]
Stack:[1,2,2,3] Code:[minus,{call,fac},times,times]
Stack:[1,2,3] Code:[{call,fac},times,times]
Stack:[1,2,3] Code:[dup,{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,2,3] Code:[{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,1,2,3] Code:[minus,{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[pop,{push,1},times,times,times]
Stack:[1,2,3] Code:[{push,1},times,times,times]
Stack:[1,1,2,3] Code:[times,times,times]
Stack:[1,2,3] Code:[times,times]
Stack:[2,3] Code:[times]
Stack:[6] Code:[]

17

© 1999-2011 Erlang Solutions Ltd.

An early JAM compiler (1989)

fac(0) -> 1;
fac(N) -> N * fac(N-1).

rule(fac, 0) ->
 [pop,{push,1}];
rule(fac, _) ->
 [dup,
 {push,1},
 minus,
 {call,fac},
 times].

18

{info,fac,1}
 {try_me_else,label1}
 {arg,0}
 {getInt,0}
 {pushInt,1}
 ret
 label1: try_me_else_fail
 {arg,0}
 dup
 {pushInt,1}
 minus
 {callLocal,fac,1}
 times
 ret

© 1999-2011 Erlang Solutions Ltd.

Compiling foo() -> {abc,10}. (1)

19

pc = program counter
stop = stack top
htop = heap top

switch(*pc++){
 case 16: // push short int
 *stop++ = mkint(*pc++);
 break;
 ...
 case 20: // mktuple
 arity = *pc++;
 *htop++ = mkarity(arity);
 while(arity>0){
 *htop++ = *stop--;
 arity--;
 };
 break;

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},
ret

Byte code

16,10,20,2

© 1999-2011 Erlang Solutions Ltd. 20

© 1999-2011 Erlang Solutions Ltd.

An early JAM compiler (1989)

sys_sys.erl 18 dummy
sys_parse.erl 783 erlang parser
sys_ari_parser.erl 147 parse arithmetic expressions
sys_build.erl 272 build function call arguments
sys_match.erl 253 match function head arguments
sys_compile.erl 708 compiler main program
sys_lists.erl 85 list handling
sys_dictionary.erl 82 dictionary handler
sys_utils.erl 71 utilities
sys_asm.erl 419 assembler
sys_tokenise.erl 413 tokeniser
sys_parser_tools.erl 96 parser utilities
sys_load.erl 326 loader
sys_opcodes.erl 128 opcode definitions
sys_pp.erl 418 pretty printer
sys_scan.erl 252 scanner
sys_boot.erl! ! ! 59 bootstrap
sys_kernel.erl 9 kernel calls
18 files 4544

Like the WAM with added primitives for spawning processes and message passing

21

© 1999-2011 Erlang Solutions Ltd.

JAM improvements

•Unnecessary stack -> heap movements

•Better with a register machine

•Convert to register machine by emulating top N
stack locations with registers

•And a lot more ...

22

© 1999-2011 Erlang Solutions Ltd.

Alternate implementations

VEE (Virdings Erlang Engine)

• Experiment with different memory model

- Single shared heap with real-time garbage collector
(reference counting)

•Blindingly fast message passing

BUT

• Small overall speed gain and more complex
internals

23

© 1999-2011 Erlang Solutions Ltd.

Alternate implementations

Strand88 machine

•An experiment using another HLL as “assembler”

• Strand88 a concurrent logic language

- every reduction a process and messages as cheap as
lists

• Problem was to restrict parallelism

BUT

• Strand's concurrency model was not good fit for
Erlang

24

© 1999-2011 Erlang Solutions Ltd.

1985-1998

25

© 1999-2011 Erlang Solutions Ltd.

By 1990 things

were going

so well

that we

could

...

26

© 1999-2011 Erlang Solutions Ltd.

Buy a train set

27

© 1999-2011 Erlang Solutions Ltd.

•Distribution

•Philosophy

•OTP structure

•BEAM

•HIPE

•Type Tools

We added new stuff

•Bit syntax

•Compiling pattern
matching

•OTP tools

•Documented way of doing
things

28

© 1999-2011 Erlang Solutions Ltd.

TEAM

29

Turbo Erlang Abstract Machine
Bogumil Hausman

•Make a new efficient implementation of Erlang

Turbo Erlang: Approaching the Speed of C

© 1999-2011 Erlang Solutions Ltd.

TEAM

•New machine design

- Register machine

•Generate native code by smart
use of GCC

•Same basic structures and
memory design as JAM

•Threaded emulator

append([H|T], X) -> [H|append(T, X);
append([], X) -> X.

30

© 1999-2011 Erlang Solutions Ltd.

Compiling foo() -> {abc,10}. (2)

31

pc = program counter
stop = stack top
htop = heap top

 ...
 pushInt: // push short int
 *stop++ = mkint(*pc++);
 goto *pc++;
 ...
 mkTuple: // mktuple
 arity = *pc++;
 *htop++ = mkarity(arity);
 while(arity>0){
 *htop++ = *stop--;
 arity--;
 };
 goto *pc++;

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},
ret

Byte code

16,10,20,2

Threaded code

0x45620,10,0x45780,2

static void *lables[] = {
 ...
 &&pushInt,
 ...
 &&mkTuple,
 ...
};

© 1999-2011 Erlang Solutions Ltd.

TEAM

• Significantly faster than the JAM

BUT

•Module compilation slow

•Code explosion, resultant code size too big for
customers

SO

•Hybrid machine with both native code and
emulator

32

© 1999-2011 Erlang Solutions Ltd.

TEAM --> BEAM

Bogdan’s Erlang Abstract Machine

And lots of improvements have been made and lots
of good stuff added

Better GC (generational), SMP, NIF’s etc. etc.

(now Björn’s Erlang abstract Machine)

33

© 1999-2011 Erlang Solutions Ltd.

Compiling pattern matching

• Erlang semantics say match clauses sequentially

BUT

•Don’t have to if you’re smart!

•Can group patterns and save testing

The implementation of Functional Languages

Simon Peyton Jones

(old, from 1987, but still full of goodies)

34

© 1999-2011 Erlang Solutions Ltd.

Compiling pattern matching

scan1([$\s|Cs], St, Line, Col, Toks) when St#erl_scan.ws ->
scan1([$\s|Cs], St, Line, Col, Toks) ->
scan1([$\n|Cs], St, Line, Col, Toks) when St#erl_scan.ws ->
scan1([$\n|Cs], St, Line, Col, Toks) ->
scan1([C|Cs], St, Line, Col, Toks) when C >= $A, C =< $Z ->
scan1([C|Cs], St, Line, Col, Toks) when C >= $a, C =< $z ->
%% Optimisation: some very common punctuation characters:
scan1([$,|Cs], St, Line, Col, Toks) ->
scan1([$(|Cs], St, Line, Col, Toks) ->

35

© 1999-2011 Erlang Solutions Ltd.

Compiling pattern matching

expr({var,Line,V}, Vt, St) ->
expr({char,_Line,_C}, _Vt, St) ->
expr({integer,_Line,_I}, _Vt, St) ->
expr({float,_Line,_F}, _Vt, St) ->
expr({atom,Line,I}, _Vt, St) ->
expr({string,_Line,_S}, _Vt, St) ->
expr({nil,_Line}, _Vt, St) ->
expr({cons,_Line,H,T}, Vt, St) ->
expr({lc,_Line,E,Qs}, Vt0, St0) ->
expr({bc,_Line,E,Qs}, Vt0, St0) ->
expr({tuple,_Line,Es}, Vt, St) ->
expr({record_index,Line,Name,Field}, _Vt, St) ->
expr({bin,_Line,Fs}, Vt, St) ->
expr({block,_Line,Es}, Vt, St) ->
expr({’if’,Line,cs}, Vt, St) ->
expr({’case’,Line,E,Cs}, Vt, St0) ->

36

© 1999-2011 Erlang Solutions Ltd.

The Erlang VM as an assembler

37

• Efene

- Mariano Guerra

- http://marianoguerra.com.ar/efene/

• LFE (Lisp Flavoured Erlang)

- Robert Virding

- http://github.com/rvirding/lfe

•Reia

- Tony Arcieri

- http://reia-lang.org/

http://github.com/rvirding/lfe
http://github.com/rvirding/lfe
http://wiki.reia-lang.org/wiki/Reia_Programming_Language
http://wiki.reia-lang.org/wiki/Reia_Programming_Language

© 1999-2011 Erlang Solutions Ltd.

THE END

Robert Virding, Erlang Solutions Ltd.
robert.virding@erlang-solutions.com

38

