Mobile Interactive Group, UK

Erlang runs TV votes on Facebook

David Dawson, Head of Technology Marcus Kern, CTO

Integrated mobile and digital communications

© 2010 Mobile Interactive Group Limited. All rights reserved

MIG

C A P dilemma

Cloudbusting

Consistency (eventually)

Summary

Who we are

- The UK 's most integrated mobile and digital communications business serving the entire mobile services value chain.
- Fastest growing privately owned technology business in the UK (Sunday Times, Tech Track No.1, 2008) (Deloitte Technology Fast 50, No.1, 2010)
- Billing and messaging, mobile operator platforms, mobile marketing, mobile advertising, experiential marketing, CRM, digital creative, on device applications and more
- Use Open source Technology
- Balance of Cutting edge / proven Technology
- Happy Developers
- ≥ 180 Staff based in the UK, US, NL, AU

Integrated mobile and digital communications

Who we work with

- Over 350 customers through multiple sectors across MIG
- New technologies and products being developed all the time
- ► We support our customers internationally
- Totally integrated approach across the group companies

Paid for mass-participation vote via SMS. The L-word

Payment vs. Interaction events

Porting the experience to Facebook

►Use Facebook credits

Expanding interaction through social features

The Requirements

Build an interactive & payment platform

- Voting / Polls / Payments
- A pluggable architecture
- 1000s of paid votes/s
- A globally scalable platform which
 - Has consistent storage
 - Is highly available

And can deal with network partitioning

Architecture approach

- Frontend app interacts with our 4.5 layered stack:
 - Secure API
 - Session Manager
 - Easily configurable business logic

erby - erlang to ruby bridge Pluggable modules DB Storage layer

MIG

C A P dilemma

Cloudbusting

Consistency (eventually)

Summary

Integrated mobile and digital communications

Can you spot the problem?

We want a DB that give us:

Consistency

Availability

Partition Tolerance

But CAP theorem dictates we can only have 2 of the 3

Integrated mobile and digital communications

Three options - can't do all three at once

So we had to opt for 2 of the 3

Availability

- Not being able to vote is bad
- Partition Tolerance
 - Network splits happen, fact of life!
- At the cost of Consistency
 - Solve the second second
 - We will solve this problem later if needs be

Our choice

Apart from satisfying the AP of CAP we wanted something that was:

- Built in erlang
- We already had used
- ► Had a great community
- And we could contribute back to

- Other reasons we choose RIAK for
 - It has tuneable CAP settings
 - Eventual consistency is in milliseconds
 - ▶ It is stable as hell (we run our gateway off it)
 - It scales doubling our machines doubled our throughput
 - The code is clean and easy to follow
 - The Basho guys are smart and helpful

MIG

C A P dilemma

Cloudbusting

Consistency (eventually)

Summary

Integrated mobile and digital communications

© 2009 Mobile Interactive Group Limited. All rights reserved

Cloudbusting – The promise

Rapid scaling

Flexible costs for TV events

Serve local

Redundant storage

≥Run both websv & DB

Integrated mobile and digital communications

© 2010 Mobile Interactive Group Limited. All rights reserved

Cloudbusting – Evaluation

So we picked Amazon EC2

Main focus: DB => we used Basho Bench for load testing

Rent reasonable fuel: 5 x Cluster Compute Instances (each with 23GB memory, Dual Xeon X5570 quad-core 64-bit, 1690 GB of instance storage, 10GBit/s Ethernet)

That's 1690 GB Ephemeral! (e·phem·er·al = Lasting for a markedly brief time)

≥Use EBS

Cloudbusting – Evaluation

≥Use EBS:

- "Highly available" redundancy and a lower disk failure rate
- Portable volume can be connected to any instance
- Backups can easily create snapshots

BUT:

- Extremely variable performance (seek times 0.5ms to 10ms+)
- We observed variation of between 4k to 16k RIAK ops/s
- Maximum throughput of 1Gbit/s
- ££,£££.££ !?!?

Cloudbusting – Conclusion

- Our immediate conclusion is to
- Buy and co-locate our own RIAK nodes
- Streamline scaling process (if we need it)
- Due to strong DB dependency, no gain to separate app nodes
- Keeping a close eye on EBS/alternatives
- Also investigating Joyent (promising for US services)

However, if the ROI of owning is less then 18 months, we'll stay with owning.

MIG

C A P dilemma

Cloudbusting

Consistency (eventually)

Summary

Integrated mobile and digital communications

© 2009 Mobile Interactive Group Limited. All rights reserved

Consistency (eventually)

Attempt #1 with the payment engine

Integrated mobile and digital communications

Consistency (eventually)

Problem!!! - Two concurrent interactions for the same user (conflict!)

Integrated mobile and digital communications

Serialiser

Hence we came up with the idea of a serializer

- One Erlang process per unique user
- Serializes their interactions
- Risk of conflict massively reduced
- Version 1: global:register
- Version 2: riak_core

ЛC

mobile interactive

Inconsistency - edge case

Although a small risk of conflicts exists:

Adding / Removing Riak Nodes

Network partitioning

We need to deal with these conflicts

►In a deterministic manner

Borrow some ideas from Statebox

Although very small risk of going overdrawn

≥e.g. Oyster card approach

Consistency (eventually #2)

Attempt #2 with the payment engine

- Merge transactions and wallet into 1 document
- Append to the document
- Move Current to Archived after show
- What about wallet size?
 - Comparable performance 1 1000 transactions
 - Acceptable performance 1000 5000 transactions

Archived				Current			
TransactionID	Amount	Balance		TransactionID	Amount	Balance	
Tx1:	+ 1.00	+ 1.00		Previous:	n/a	+ 2.00	
Tx2:	+ 2.00	+ 3.00		Tx4:	+ 1.00	+ 3.00	
Tx3:	- 1.00	+ 2.00		Tx5:	+ 2.00	+ 5.00	

Conflict Resolution

In the event of a conflict with multiple wallets

- Union the wallets (TransactionID is unique)
- Calculate new balance
- Write Resolved wallet

Current			Resolved Current		
TransactionID Previous:	Amount n/a	Balance + 2.00			
Tx4: Tx5:	+ 1.00 + 2.00	+ 3.00 + 5.00	TransactionID	Amount	Balance
			Previous:	n/a	+ 2.00
			Tx4:	+ 1.00	+ 3.00
TransactionID	Amount	Balance	Tx5: Tx6:	+ 2.00 - 2.00	+ 5.00 + 3.00
Previous	n/a	+ 2 00			
Tx4:	+ 1.00	+ 3.00			
Tx6:	- 2.00	+ 1.00			

MIG

C A P dilemma

Cloudbusting

Consistency (eventually)

Summary

Summary

- 1. Stick with choice of *Availability/Partition Tolerance*
- 2. Continue to investigate Cloud options
- **3**. Working closely with Basho
- **4**. Minimize conflicts through code
- 5. Deal with them in a deterministic way
- 6. Following / sharing case studies

Questions

Integrated mobile and digital communications

© 2009 Mobile Interactive Group Limited. All rights reserved