
A Decade of Yaws

Steve Vinoski
Architect, Basho Technologies

Erlang Factory London 2011
9 June 2011

@stevevinoski
http://steve.vinoski.net/

1

http://steve.vinoski.net
http://steve.vinoski.net

What We’ll Cover

• Some Yaws history

• Yaws community

• Some Yaws features

• Performance discussion

• Yaws future

2

What is Yaws?
• "Yet Another Web Server" — an HTTP 1.1 web server

• Brainchild of Claes "Klacke" Wikström, who also created
Erlang features such as

• bit syntax

• dets

• Mnesia

• Distributed Erlang

• Yaws is known for years of reliability and stability

• Current version: 1.90, released 26 May 2011

3

Why Yaws?
• In 2001 Klacke was in a

floorball league and
needed a way for players
to sign up on the web

• He was horrified by the
LAMP stack and PHP

• So he wrote Yaws, but
never finished the
floorball site :-)

4

Yaws Community

5

Website and Email

• Website: http://yaws.hyber.org

• Mailing list: erlyaws-list@lists.sourceforge.net

• List archives: http://sourceforge.net/
mailarchive/forum.php?forum_name=erlyaws-
list

6

http://yaws.hyber.org
http://yaws.hyber.org
mailto:erlyaws-list@lists.sourceforge.net
mailto:erlyaws-list@lists.sourceforge.net
http://sourceforge.net/mailarchive/forum.php?forum_name=erlyaws-list
http://sourceforge.net/mailarchive/forum.php?forum_name=erlyaws-list
http://sourceforge.net/mailarchive/forum.php?forum_name=erlyaws-list
http://sourceforge.net/mailarchive/forum.php?forum_name=erlyaws-list
http://sourceforge.net/mailarchive/forum.php?forum_name=erlyaws-list
http://sourceforge.net/mailarchive/forum.php?forum_name=erlyaws-list

Committers

(two or more commits)

0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%1%1%1%1%1%1%1%2%
5%

5%

12%

12%

55%

Claes Wikstrom Steve Vinoski
Johan Bevemyr Carsten Schultz
Tobbe Tornquist Christopher Faulet
Mikael Karlsson Fabian Alenius
Mickael Remond Olivier Girondel
Luke Gorrie Leon Smith
Martin Bjorklund Yariv Sadan
Tuncer Ayaz Hans Ulrich Niedermann
Davide Marquês Paul Hampson
Julian Noble Sean Hinde
Eric Liang Per Andersson
Nicolas Thauvin Dominique Boucher
Thomas O'Dowd Sebastian Stroll
Peter Lemenkov Jean-Sébastien Pédron
Fabian Linzberger Bruce Fitzsimmons
Anders Nygren

7

Commits per Committer

8

Commits per Month

9

Top Contributors

A total of 109 individual contributors

10

Project Activity

• Last 32 weeks

11

Yaws Features

12

Features and Concepts
A large number of features

built over

A small number of concepts

• At its core Yaws is pretty straightforward

• Event handling and dispatch in yaws_server.erl

• Yaws makes simple apps simple, and feature-rich
apps possible

13

Configuration
• Two configuration methods:

• config file, for stand-alone server

• records and lists, for embedded server

• Two levels of config:

• global, via #gconf record

• per virtual server, via #sconf record

14

File Serving
• Use target URI path together with configured

document filesystem root path to locate file

• Yaws uses a driver for the sendfile() system call
on platforms that support it

• lower CPU, fewer system calls

• Tuncer Ayaz now pulling sendfile driver into
Erlang/OTP

15

Dynamic Apps

• Only serving files? Use G-WAN or nginx

• Use Yaws for generating and serving dynamic
content

• Take advantage of multiple apps per VM,
supervisors, behaviors, massive concurrency,
reliability

16

“.yaws” Pages
• Intermix HTML and Erlang

• Enclose Erlang code between <erl>...</erl> tags

• To serve a “.yaws” page, Yaws:

• JIT-compiles the code (and caches it)

• runs it (expects to find an out/1 fun)

• replaces <erl>...</erl> with the out/1 result

• JIT page compilation was in Yaws from day one

17

ehtml
• HTML encoded as Erlang terms

• <tag attr1=”attr1val” attr2=”attr2val”>
 child
</tag>

is represented in ehtml as the Erlang term

{tag, [{attr1, “attr1val”},{attr2,”attr2val”}],
“child”}

18

#arg
• Key Yaws data structure

• Contains everything Yaws knows about a request

• client socket, HTTP headers, request info, target
URL details

• Yaws passes #arg to application code and
callbacks

• See http://yaws.hyber.org/arg.yaws for details

19

http://yaws.hyber.org/arg.yaws
http://yaws.hyber.org/arg.yaws

“.yaws” Example

• <html>
 <erl>
 out(_Arg) ->
 {ehtml,
 [{title, [], “Hello World”},
 {p, [], “Hello, world!”}]}.
 </erl>
</html>

20

out/1
• Several Yaws features require an app-provided

out/1 callback fun, for example

• “.yaws” pages

• appmods (application modules)

• yapps (Yaws applications)

• The single fun argument is an #arg record

21

Appmods

• Appmod is a module supplying an out/1
callback fun taking an #arg record

• Appmods are configured for URL paths or
sub-paths

• When a request arrives for a matching URL,
Yaws dispatches the request to the appmod
callback fun

22

Appmod Origins
• Appmods appeared around 2004

• Klacke was at Nortel, and used Yaws as an
embedded server in an SSL VPN product

• Needed full control over the URL, which
appmods provided

• Very versatile — probably the most used
feature of Yaws

23

Appmod Config
• Example server appmod config (in config file):

appmods = <cgi-bin, yaws_appmod_cgi>

• This attaches the yaws_appmod_cgi module to any
cgi-bin portion of the target URL

• You can have multiple appmods per server

• Attach an appmod to “/” to control all URLs under a
given server

24

Streaming Data
• Server might not know the response size, might

not yet have all the data, might not want full
response data to be all in memory

• HTTP 1.1 chunked transfer encoding helps with
these cases

• Yaws also allows app processes to stream,
useful for long-polling apps or streaming of
non-chunked data

25

Chunked Transfer
• out/1 first returns

{streamcontent, MimeType, FirstDataChunk}

• Yaws then awaits further chunks from the app

• App sends subsequent chunks via
yaws_api:stream_chunk_deliver(Pid, Chunk)

• App ends transfer with
yaws_api:stream_chunk_end(Pid)

26

Streaming Process
• out/1 can return

{streamcontent_from_pid, MimeType, Pid}

• Pid identifies process streaming data back to client

• Yaws yields client socket control to Pid

• To send data, Pid calls
yaws_api:stream_process_deliver(Socket, IoList)

• To finish, Pid calls
yaws_api:stream_process_end(Socket, YawsPid)

27

Streaming Example

Origin
Server

Web
Client

Dist
Erlang

Flash Storage

Delivery
Cards

Cache
(Yaws)

Ingest
Cards

Ingest
(Erlang)

Verivue MDX 9000 video delivery hardware

28

Yaws Integration
• Linked-in driver for open, close, and sockopts

• Used with gen_tcp via {fd, Fd} option

• Tracked by controlling process

• Yaws integration via fdsrv module and streaming API

• fdsrv enabled integration with offload listen socket

• Zero changes to Yaws needed in order to use it in this
application

29

Embedding
• Some think Yaws is only a stand-alone server

• For a stand-alone server, Yaws is the top-level or
“controlling” app

• But Yaws can also be embedded within or beside
other applications

• start under your own supervisor

• or start as an embedded app

30

Embedding Under
Your Supervisor

• yaws_api:embedded_start_conf(Docroot,
ServerConfList, GlobalConfList, ServerId)

• Returns full global and server configurations
along with child specs for Yaws processes

• Start the children under your supervisor

• Then call yaws_api:setconf with the full global
and server configurations

31

Other Yaws Features
• HTTP 1.1

• URL/#arg rewriting
• Yaws applications (yapps)
• SSL support

• cookie/session support
• munin stats
• CGI and FCGI
• reverse proxy

• file upload
• WebDAV
• small file caching

• SOAP support

• haXe support

• JSON and JSON-RPC 2.0
• websockets
• GET/POST chunked transfer
• multipart/mime support
• file descriptor server (fdsrv)
• server-side includes
• heart integration
• both make and rebar builds

• man pages
• LaTex/PDF documentation

32

Recent Work

• Major contributions from Christopher Faulet
for version 1.90

• Examples: authorization improvements, ACLs,
config for Expires header, more flexibility for
#arg rewrite modules, better shutdown
control, traffic shaping, extended PHP handler

• Nearly 30 changes/features in all

33

Performance

34

Apache vs. Yaws
http://www.sics.se/~joe/apachevsyaws.html

number of connections

kb
yt

es
/s

ec
on

d

35

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html

$ curl -I http://www.sics.se/~joe/apachevsyaws.html

HTTP/1.1 200 OK
Date: Fri, 03 Jun 2011 02:06:59 GMT
Server: Apache/2.2.6 (Unix)
Accept-Ranges: bytes
Content-Length: 4286
Connection: close
Content-Type: text/html

But Ironically...

36

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html

The Performance
Presumption

• Why do people benchmark requests per second?
Because it’s easy.

• Many seem to presume/conclude the fastest server
is the best server

• Benchmarks often completely miss actual
application concerns

• A 2003 article: http://steve.vinoski.net/pdf/IEEE-
The_Performance_Presumption.pdf

37

http://steve.vinoski.net/pdf/IEEE-The_Performance_Presumption.pdf
http://steve.vinoski.net/pdf/IEEE-The_Performance_Presumption.pdf
http://steve.vinoski.net/pdf/IEEE-The_Performance_Presumption.pdf
http://steve.vinoski.net/pdf/IEEE-The_Performance_Presumption.pdf

Benchmarking Advice

• Great advice from Mark Nottingham’s blog:
http://www.mnot.net/blog/2011/05/18/
http_benchmark_rules

• More great advice from Jesper Louis Andersen’s
blog: http://jlouisramblings.blogspot.com/
2011/06/web-server-benchmarking-rant.html

38

http://www.mnot.net/blog/2011/05/18/http_benchmark_rules
http://www.mnot.net/blog/2011/05/18/http_benchmark_rules
http://www.mnot.net/blog/2011/05/18/http_benchmark_rules
http://www.mnot.net/blog/2011/05/18/http_benchmark_rules
http://jlouisramblings.blogspot.com/2011/06/web-server-benchmarking-rant.html
http://jlouisramblings.blogspot.com/2011/06/web-server-benchmarking-rant.html
http://jlouisramblings.blogspot.com/2011/06/web-server-benchmarking-rant.html
http://jlouisramblings.blogspot.com/2011/06/web-server-benchmarking-rant.html

mnot’s Advice
• Consistency: use same OS, hardware, network, set of

running apps every time, and avoid virtual machines

• Keep test clients off the server host

• Understand limiting factors such as network bandwidth

• Tune the OS

• Avoid short duration “hello world” tests

• Follow the link for more advice

39

JLouis’s Advice
• Pay attention to handling overload

• “...for most servers, the speed is so good it
doesn't matter. Stability and the overload
situation is more important to optimize for.”

• Pay attention to latency and outliers (stability)

• Beware the average (same advice from mnot
as well)

40

My Advice

• Don’t believe benchmarks posted by server
developers — do your own benchmarking

• Beware of servers that don’t fully support HTTP
(achieving “speed” by leaving out critical support)

• In addition to other problems, req/sec
measurements on “hello world” tests ignore
differences in HTTP header sizes, resulting in
apples-oranges comparisons

41

Bottlenecks
• Event loops, socket handling, data handling

don’t vary much across well-written Erlang web
servers

• Erlang web server performance is significantly
impacted by the VM

• TCP driver

• HTTP packet decoding

42

The Lisp Curse
• “Lisp is so powerful that problems which are technical issues in

other programming languages are social issues in Lisp.”

http://www.winestockwebdesign.com/Essays/Lisp_Curse.html

• “Exercise for the reader: Imagine that a strong rivalry develops
between Haskell and Common Lisp. What happens next?

Answer: The Lisp Curse kicks in. Every second or third serious
Lisp hacker will roll his own implementation of lazy evaluation,
functional purity, arrows, pattern matching, type inferencing,
and the rest. Most of these projects will be lone-wolf
operations.”

43

http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html

The Erlang Curse?
• Erlang makes writing network apps and servers so easy,

pretty much anyone can do it

• It’s too easy to

• just claim that existing systems like Yaws are too
complicated, without really trying them

• and roll your own “lightweight” server instead

• Do we really need more Erlang web servers?

• And what about community fragmentation?

44

Advancing the State of
the Art

• You want to make Erlang web servers
significantly faster? Write a HTTP TCP driver we
can all use

• Or focus on programming models, like
webmachine, nitrogen, EWGI have done

• Or if you seek server modularity, talk to us.
Klacke and I gladly welcome questions,
observations, suggestions, and contributions

45

Yaws Future

46

Is Yaws “Cool”?
• Yaws isn’t cool if

• you judge coolness by how new something is

• you judge coolness by the project’s website :-)

• Yaws is cool if

• years of reliability and stability are cool

• a decade-old, still very active and widely deployed open
source project with useful features and a strong community
of users and contributors and is cool

47

Going Forward
• Continue accepting community contributions

• Keep an eye on HTTP changes (like PATCH)

• Keep an eye on developing standards like websockets

• Reverse proxy work, possible changes to dispatching for
more flexibility/modularity

• More and better tests

• Version 2.0?

• Above all, continue offering great stability, reliability,
performance and scalability

48

Thanks

49

