
© 2008 Powerset

Katamari
Roll Your Own Reliable, Distributed API

1

© 2008 Powerset

Katamari

• Reliability

• Routing

• Scalability

• Easily!

2

© 2008 Powerset

Motivations:
Powerset

3

© 2008 Powerset

Picture It: Powerset

• You’re a small startup with a big charter.

• “It’s just redefining search as the industry
knows it.”

• You have the Press’s attention, but how
long will that last?

• We’re experimenting and iterating quickly.

• Release soon!

4

© 2008 Powerset

Picture It: Powerset

• Your code does amazing things but:

• Much of it was written before “threads”
or “exceptions” were in common use.

• Some parses require unbounded
memory. (It’s NP-complete, you know?)

• Most of it is not designed to work in an
embedded library mode.

5

© 2008 Powerset

You’d Better Be Able To

• Scale as you get more hardware!

• Detect misbehaving services and restart
them.

• Enforce global timeouts for requests that
cause long waits.

• Host multiple versions of the API for A→B
testing.

6

© 2008 Powerset

Motivations:
mog.com

7

© 2008 Powerset

Picture It: mog.com

• You’ve got a prototype on your laptop...

• ... but you want it on a cluster ASAP!

• You’ve got it on a cluster...

• ... but now you need to move to EC2!

• You’ve got a great idea...

• ... let’s hope Digg.com doesn’t kill you.

8

I’ve been there, and in response, I wrote
Katamari.

9

© 2009 Powerset

What is a
Katamari?

10

• Distributed Service Proxy, aggregating
almost anything.

• Integration layer for any kind of functional
service.

• Simple Network & Local Self-Healing

• A response to 3 years of frustration that
something like it didn’t exist!

11

• Written in Erlang

• But only for the network and reliability
parts, you can use any language to talk to
Katamari!

• Powerset uses it for their query analysis &
reformulation on their live site.

12

© 2008 Powerset

How Does It Do That?

• Katamari starts local instances of single-
threaded response-loop processes on
worker machines, talking to them locally
using Erlang Binary Protocol.

• Katamari interrogates these processes and
aggregates them into homogenous groups,
then dispatches requests to them in a
round-robin fashion.

13

© 2008 Powerset

Katamari Architecture

• Main Components:

• Masters

• Resource Pools

• Faceplates

• Resource Managers

• Chassis

14

© 2008 Powerset

Masters

• The “Root” of Clusters

• Each one is an erlang node.

• They contain the cluster’s state:

• All resources available to the cluster

• All resources currently in use

15

© 2008 Powerset

Master Set

• Each Cluster has a “set” of masters.

• There isn’t just one!

• [‘master@host1’, ‘master@host2’]

• Order matters!

16

© 2008 Powerset

Masters

• Masters act like the “edge” of the cluster.

• Everything connects to the cluster (in both
the erlang sense and the Katamari sense)
by connecting to a Master.

17

© 2008 Powerset

Master Election

• One master is the “leader”.

• We use gen_leader2 to hold elections.

• If the master fails, an election is held to
determine who should take up
responsibility.

• Priority is determine by Master List

• Primary master has total authority.

18

© 2008 Powerset

19

© 2008 Powerset

20

© 2008 Powerset

21

© 2008 Powerset

22

© 2008 Powerset

23

© 2008 Powerset

Resource Pools

• Master’s pool worker nodes into
homogenous pools.

• Each Master keeps an identical copy of the
entire poolset.

24

© 2009 Powerset

Masters

25

© 2008 Powerset

Faceplates

• Provide a way to talk to the cluster

• References master data, but does not store
it.

• It is an observer to the gen_leader2
process.

• Any kind of server imaginable, from JSON-
RPC to Thrift to raw TCP/IP.

26

© 2008 Powerset

Faceplates

• Faceplates are the endpoint of all requests
into the resource cloud.

• More on this later.

27

© 2009 Powerset

Faceplates

28

© 2008 Powerset

Resource Manager

• Runs on worker machines

• Invokes your Chassis processes and
introduces them to the cloud.

• Ensures that if a process becomes
unresponsive or crashes, it is restarted and
reintroduced.

29

© 2008 Powerset

Resource Manager: Chassis

• Ruby and C++ library for linking to
Resource Manager.

• EBP Event Loop

• Trying to make it easy to incorporate any
code into a Katamari cluster.

30

© 2008 Powerset

Chassis Example

class FakeHandler < Chassis
 kind "fake"

 handle(:echo, :textsy, :options) do |args|
 "You said: " + args[:textsy] + ' ' + args[:options].inspect
 end

 handle(:failure_to_launch) do |args|
 exit
 end

 handle(:test_arguments, :cowcat, true) do |args|
 "Arg structure was: #{args.inspect}"
 end

 handle(:cry_havok) do |args|
 return_and_exit("Let slip the dogs of war")
 end
end

31

© 2009 Powerset

Resource
Managers

32

© 2008 Powerset

Using Katamari

• JSON RPC faceplate.

• Thrift Faceplate

• Stats faceplate.

33

© 2009 Powerset

Making Requests

34

© 2008 Powerset

35

© 2008 Powerset

36

© 2008 Powerset

37

© 2008 Powerset

38

© 2008 Powerset

39

© 2008 Powerset

40

© 2008 Powerset

41

© 2008 Powerset

But What About...?

• What if there is no pool with details
matching those of the request?

• We signal an error.

• What happens if the pool is busy and there
are no resources to use?

• Your request waits. There is a tunable
global timeout that may ultimately be
reached.

42

© 2008 Powerset

Katamari In Action

• Currently In Use At Powerset

• Does all query reformulation

• This means, we do multiple operations
every time the user hits “enter” in the
text box.

43

© 2008 Powerset

Katamari In Action

• Each User Query generates multiple
requests to our Katamari

• (some Katamari services actually talk to
Katamari to do their work)

44

© 2008 Powerset

Katamari In Action

• Katamari works well for this kind of task.

• Multiple versions can be deployed.

• Rack failures don’t bring down the site.

• Failure boxes brought back online tend
to rejoin the cluster without instruction.

45

© 2008 Powerset

Katamari In Action

• Almost No Downtime in over a year!

• Only real downtime was a hardware
failure incident before we had multiple-
masters.

• Cluster promptly self-healed once the
box was repaired.

46

© 2008 Powerset

Future Work

• Tunable Robustness via Majority Requests.

• Service to react to resource depletion.

• Automatic Provisioning!

47

© 2008 Powerset

Future Work

• Inclusion of a key-value data store.

• Caching

• Reliable storage for metrics

• Intermediate Storage For...

48

© 2008 Powerset

Future Work

• Map-Reduce system.

• “Erlojel”

49

© 2008 Powerset

Open Source

• http://github.com/KirinDave/fuzed

50

http://github.com/KirinDave/fuzed/tree/master
http://github.com/KirinDave/fuzed/tree/master

© 2008 Powerset

Open Source

• Working on making Katamari’s
development transparent and Open
Source.

• Just a matter of protocol.

51

© 2008 Powerset

Want to know more?

• Come talk to us.

• dfayram@microsoft.com /
abhay.kumar@microsoft.com

• @KirinDave / @abhaykumar on Twitter

52

mailto:dfayram@microsoft.com
mailto:dfayram@microsoft.com
mailto:abhay.kumar@microsoft.com
mailto:abhay.kumar@microsoft.com

© 2009 Powerset

Thank You.

53

