
eTorrent - writing P2P clients in Erlang
Analysis, Implementation, Philosophy

Jesper Louis Andersen
jesper.louis.andersen@gmail.com

Jun 9th, 2011



Overview

What is BitTorrent? You may already know...

P2P Ideas To consider in other projects...

eTorrent The Implementation...



Computing History

I Main Frames

I Client / Server

I Distributed Mainframes (dynamic server side HTTP)

I Client / Server distributed (JS+HTML5+...)

I CLOUD CLOUD CLOUD CLOUD (Buzzword Bingo!)



Computing History

I Main Frames

I Client / Server

I Distributed Mainframes (dynamic server side HTTP)

I Client / Server distributed (JS+HTML5+...)

I CLOUD CLOUD CLOUD CLOUD (Buzzword Bingo!)



Computing History

I Main Frames

I Client / Server

I Distributed Mainframes (dynamic server side HTTP)

I Client / Server distributed (JS+HTML5+...)

I CLOUD CLOUD CLOUD CLOUD (Buzzword Bingo!)



Computing History

I Main Frames

I Client / Server

I Distributed Mainframes (dynamic server side HTTP)

I Client / Server distributed (JS+HTML5+...)

I CLOUD CLOUD CLOUD CLOUD (Buzzword Bingo!)



Computing History

I Main Frames

I Client / Server

I Distributed Mainframes (dynamic server side HTTP)

I Client / Server distributed (JS+HTML5+...)

I CLOUD CLOUD CLOUD CLOUD (Buzzword Bingo!)



Joe Says:

“To make a fault-tolerant system you need at least two CLOUDS!”

Peer-to-peer: Make each client a client+server at the same time.

We are betting this is the future.
BitTorrent is a P2P protocol for content distribution.



HTTP vs BitTorrent

BitTorrent is about Content distribution. Some key differences:

HTTP

I Simple

I Stateless

I One-to-many

I “Serial”

I Upstream bandwidth
heavy

BitTorrent

I Complex

I Stateful

I Peer-2-Peer

I “Concurrent”

I Upstream bandwidth
scales proportionally
with number of
consumers

In BitTorrent everything is sacrificed for the last point.



BitTorrent Idea:

S

C

C

C



HTTP versus BitTorrent:

I Network 101: C is a set of clients. In a closed network∑
c∈C

Ic ≤
∑
c∈C

Oc

I A web server scales 1-to-n: n links, 1 upstream.

I BitTorrent scales: m-to-n:
(n
2

)
= n(n−1)

2 links, n upstreams.



One Slide BitTorrent

I Want to distribute an array of bytes (i.e., a file)

I Utilize concurrency to do it!
I Three phases:

1. Naming / Identity
2. Discovery
3. Exchange



Naming / Identity

I a .torrent file is a JSON-like structure, easily Rec. Descent
parsed.

I Cut data into pieces, cryptographic checksum on each piece in
torrent file.

I The torrent file is out fingerprint/DNA providing integrity.

I If we trust the torrent file, we don’t have to trust peers.



Discovery

I Find other clients to exchange pieces with.

I Centralized: Contact a tracker – web server keeping track of
IP/Port pairs.

I Decentralized: Query a Distributed Hash Table for the
IP/Port pair.



Exchange

I Make TCP connection.

I Handshake, Identify, Negotiate Extensions

I The wire protocol is an asynchronous messaging protocol!

I A peer can crash at any point!

I Sounds familiar?



Exchange

I Make TCP connection.

I Handshake, Identify, Negotiate Extensions

I The wire protocol is an asynchronous messaging protocol!

I A peer can crash at any point!

I Sounds familiar?



Exchange

I Make TCP connection.

I Handshake, Identify, Negotiate Extensions

I The wire protocol is an asynchronous messaging protocol!

I A peer can crash at any point!

I Sounds familiar?



Exchange

I Make TCP connection.

I Handshake, Identify, Negotiate Extensions

I The wire protocol is an asynchronous messaging protocol!

I A peer can crash at any point!

I Sounds familiar?



“BitTorrent is just a simple specialization of Erlang Process
semantics”



Efficiency

I BitTorrent is extremely efficient (saturates)

I Economy strategy: To optimize yourself egoistically, you must
help others.

I The network has an emergent behaviour: When each client
optimizes itself, the network as a whole benefits.

I The strategy of whom downloads what from whom is not
written down in code!



Efficiency

I BitTorrent is extremely efficient (saturates)

I Economy strategy: To optimize yourself egoistically, you must
help others.

I The network has an emergent behaviour: When each client
optimizes itself, the network as a whole benefits.

I The strategy of whom downloads what from whom is not
written down in code!



Efficiency

I BitTorrent is extremely efficient (saturates)

I Economy strategy: To optimize yourself egoistically, you must
help others.

I The network has an emergent behaviour: When each client
optimizes itself, the network as a whole benefits.

I The strategy of whom downloads what from whom is not
written down in code!



Etorrent – History

Etorrent - A bittorrent client implemented in Erlang

I Erlang/OTP implementation

I Initial Checkin, 27th Dec 2006

I Had first working version around early 2008

I 8 KSLOCs

I Two main developers: Magnus Klaar, Jesper Louis Andersen

I Contributions: Edward Wang, Adam Wolk, Maxim Treskin,
Peter Lemenkov, and Tuncer Ayaz.



Why?

I Wanted to learn Erlang

I Pick a project - parts not in brain

I Map/Fold/Filter and FP in general is something I know

I OTP, Rebar, Common Test, ... not so much

I Performance model!

I A real project is an excellent driver



Why?

I Wanted to learn Erlang

I Pick a project - parts not in brain

I Map/Fold/Filter and FP in general is something I know

I OTP, Rebar, Common Test, ... not so much

I Performance model!

I A real project is an excellent driver



Why?

I Wanted to learn Erlang

I Pick a project - parts not in brain

I Map/Fold/Filter and FP in general is something I know

I OTP, Rebar, Common Test, ... not so much

I Performance model!

I A real project is an excellent driver



Why?

I Wanted to learn Erlang

I Pick a project - parts not in brain

I Map/Fold/Filter and FP in general is something I know

I OTP, Rebar, Common Test, ... not so much

I Performance model!

I A real project is an excellent driver



Why?

I Wanted to learn Erlang

I Pick a project - parts not in brain

I Map/Fold/Filter and FP in general is something I know

I OTP, Rebar, Common Test, ... not so much

I Performance model!

I A real project is an excellent driver



Why?

I Wanted to learn Erlang

I Pick a project - parts not in brain

I Map/Fold/Filter and FP in general is something I know

I OTP, Rebar, Common Test, ... not so much

I Performance model!

I A real project is an excellent driver



Trying to do things right

I Git – GitHub

I Well-documented

I Eunit, common test, dialyzer, rebar, QuickCheck/Proper

I OTP all the way

I I use the project for code examples all the time (because
everything is in there somewhere)

I Excellent vehicle for explaining stuff on IRC – just drop a
github link

I Achilles heel: No distribution yet

I UI is a directory - background operation

I Can be used as-an-application in other Erlang projects



Building it:

I Async messaging, Check!

I Fault tolerance for error handling, Check!

I Built in Concurrency, Check!

I Each peer is independent.

I Some things happen on a Torrent-local scale.

I Some things happen on a global scale.



Etorrent Supervisor Tree:

Legend

Torrent

simple_one_for_one

one_for_one

one_for_all

etorrent_sup

choking

conn_pool_mgr

listen_sup

dht

dirwatcher_sup

torrent_pool

udp_tracker_sup

torrent_sup

udp_pool

udp_proto_sup

tracker

piece_mgmt

io_sup

peer_pool

file_io_sup

peer_sup
(Send/Recv/Control)



On Being a Desktop Application

It is different:

I Case in point: Adobe Flash(tm)

I Must beat it Memory-wise and CPU-wise



On Being a Desktop Application

It is different:

I Case in point: Adobe Flash(tm)

I Must beat it Memory-wise and CPU-wise



On Being a Desktop Application

It is different:

I Case in point: Adobe Flash(tm)

I Must beat it Memory-wise and CPU-wise



Performance

I Long story short: Under load, we are competitive with C
clients.

I For a single torrent we are beaten.

I Use more Memory (Erlangs data representation)

I Comparatively few optimizations has been added to the code
base.

I Robustness: If we run, we keep running. Fares better than
most clients here.



Performance

I Long story short: Under load, we are competitive with C
clients.

I For a single torrent we are beaten.

I Use more Memory (Erlangs data representation)

I Comparatively few optimizations has been added to the code
base.

I Robustness: If we run, we keep running. Fares better than
most clients here.



Why can we compete?

I Erlang is flexible, we can try more things

I Erlang is productive, we can iterate faster

I Erlang is fault tolerant, we don’t implement all the corner
cases

I C programs have no abstraction, so they brute force

I We can choose the right Data Structure or Algorithm



Why can we compete?

I Erlang is flexible, we can try more things

I Erlang is productive, we can iterate faster

I Erlang is fault tolerant, we don’t implement all the corner
cases

I C programs have no abstraction, so they brute force

I We can choose the right Data Structure or Algorithm



Tricks employed

I No NIFs!

I Erlangs VM has 10+ years optimizations, push down

I Use ETS, dict, array where applicable

I Ignore everything but the critical path

I Do not show any mercy on the critical path:
ets:lookup element/3 over ets:lookup/2

I Remember to measure on the critical path!



Tricks employed

I No NIFs!

I Erlangs VM has 10+ years optimizations, push down

I Use ETS, dict, array where applicable

I Ignore everything but the critical path

I Do not show any mercy on the critical path:
ets:lookup element/3 over ets:lookup/2

I Remember to measure on the critical path!



Tricks employed

I No NIFs!

I Erlangs VM has 10+ years optimizations, push down

I Use ETS, dict, array where applicable

I Ignore everything but the critical path

I Do not show any mercy on the critical path:
ets:lookup element/3 over ets:lookup/2

I Remember to measure on the critical path!



Tricks employed

I No NIFs!

I Erlangs VM has 10+ years optimizations, push down

I Use ETS, dict, array where applicable

I Ignore everything but the critical path

I Do not show any mercy on the critical path:
ets:lookup element/3 over ets:lookup/2

I Remember to measure on the critical path!



Fight unfair

I Change the algorithm, use fewer operations

I Often possible!

I Heuristics: The common case should be fast at the expense of
everything else

I Approximations: Don’t go for optimal where near-optimal is
equally good and much faster.



Fight unfair

I Change the algorithm, use fewer operations

I Often possible!

I Heuristics: The common case should be fast at the expense of
everything else

I Approximations: Don’t go for optimal where near-optimal is
equally good and much faster.



Fight unfair

I Change the algorithm, use fewer operations

I Often possible!

I Heuristics: The common case should be fast at the expense of
everything else

I Approximations: Don’t go for optimal where near-optimal is
equally good and much faster.



Repository

We use github for all code:

http://www.github.com/jlouis

Look for etorrent

http://www.github.com/jlouis

