Large-scale Game Messaging in
Erlang at IMVU

Jon Watte

Technical Director, IMVU Inc
@jwatte / #erlangfactory

Presentation Overview

@

@

@

Describe the problem
Low-latency game messaging and state distribution

Survey available solutions
Quick mention of also-rans

Dive into implementation
Erlang!

Discuss gotchas
Speculate about the future

From Chat to Games

= MOREGAMES ~ MYSTUFF SHO
oY € no
balloono kel a
You
(GuestRiayabasautio) A oG =
» N = . i a :
2 (Guest¥natiissweet
N
'?“' , ‘ (deemacs(11210).
00 Home - [l 1/ i p) 7i
Eam creats [nvite your friends to IMVU (v % =
e e eey
5 . g o b M
C Jaeh 3 = > fiand
4 8 - _ My f sald she was
0 q : fotaly into you...
r—— 5
a5 P Y
Hi, 'm ~ ; -
i - mamdl Lagrange, ‘W // \‘
.. your Balloono
tutor 2
I
3
ow do e latest 3D chat? Please se a 9
7
.

Context

Load
Balancers

Load
Balancers

Web
Servers
HTTP

_{

Caching

\

J

Long Poll

f

Game
Servers
HTTP

Caching

\

J

Databases)

What

o We Want?

= Any-to-any messaging with
ad-hoc structure
Chat; Events; Input/Control
=~ Lightweight (in-RAM) state
maintenance
Scores; Dice; Equipment

New Building Blocks

Queues provide a sane view of distributed state
for developers building games

Two kinds of messaging:
Events (edge triggered, “"messages”)
State (level triggered, “"updates”)
Expressed as “mounts”

Integrated into a bigger system

From Long-poll to Real-time

N
Web —%[Caching
Load Servers
Balancers | /
N
LoxEoII \(.
Load 1 Caching
Balancers
Servers
|
\ Connection | Message] Today's

Databases

Game

J
Gateways Queues Talk

Performance Requirem

Simultaneous user count:
80,000 when we started
150,000 today
1,000,000 design goal _

Real-time performance (the main driving requirement)
Lower than 100ms end-to-end through the system

Queue creates and join/leaves (kill a lot of contenders)

>500,000 creates/day when started
>20,000,000 creates/day design goal

Also-rans: Existing Wheels

= AMQP, JMS: Qpid, Rabbit, ZeroMQ, BEA, IBM etc

Poor user and authentication model
Expensive queues

= IRC
Spanning Tree; Netsplits; no state

= XMPP / Jabber
Protocol doesn’t scale in federation

= Gtalk, AIM, MSN Msgr, Yahoo Msgr
If only we could buy one of these!

Our Wheel is Rounder!

= Inspired by the 1,000,000-user mochiweb app

http://www.metabrew.com/article/a-million-user-
comet-application-with-mochiweb-part-1

= A purpose-built general system
= Written in Erlang

= @jwatte / #erlangfactory

http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1

Section: Implementation

= Journey of a message

= Anatomy of a queue

= Scaling across machines
=~ Erlang

The Journey of a Message

> T & @® MyRoom ello, World g9

Fow -
‘o .
™ =
-— :
e N
~

The Journey of a Message

Gateway Queue Node
Message in Queue:] Gateway for User Queue Node Queue Process
/room/123]
Mount: chat Find node for Find queue List of
Data: Hello, World! /room/123 /room/123 subscribers
|
Gateway Validation

Gateway for User

N

Forward
message

Anatomy of a Queue

/" Queue Name: /room/123

Mount
Type: message
Name: chat

User A: I win.
User B: OMG
Pwnies!

User A: Take that!

~

Mount

Type: state
Name: scores

User A: 3220
User B: 1200

Subscriber List

User A @
Gateway C

User B @
Gateway B

_

/

A Single Machine Isnt Enough

1,000,000 users, 1 machine?

25 GB/s memory bus

40 GB memory (40 kB/user)
Touched twice per message
one message peris 3,400 ms

@jwatte / #erlangfactory %

Scale Across Machines

Gateway

Gateway

Gateway

Gateway

Consistent
Hashing

Con5|stent Hashing

=~ The Gateway maps queue name -> node
= This is done using a fixed hash function

= A prefix of the output bits of the hash function is used as a

look-up into a table, with a minimum of 8 buckets per
node

= Load differential is 8:9 or better (down to 15:16)

+~ Updating the map of buckets -> nodes is managed
centrally

:l:.._j:-:l:*..:-
B ER @) @ (o

Consistent Hash Table Update

Minimizes amount of data shifted

If nodes have more than 8 buckets, steal 1/N
of all buckets from those with the most and
assign to new target

If not, split each bucket, then steal 1/N of all
buckets and assign to new target

Erlang

=~ Develo

ERLANG

Section: Details

Load Management
Marshalling
RPC / Call-outs

Hot Adds and Fail-over
The Boss!

Monitoring

Load Mana

gement (HAProxy)

Gateway

\/

[HAProxy I I

Gateway

Gateway

X

Gateway

Consistent
Hashing

\.

Queues

s

\.

Queues

7

\.

Queues

s

\.

Queues

Marshalling (protobuf)

message MsgG2cResult ({
required uint32 op id = 1;
required uint32 status = 2;

optional string error message = 3;

RPC (HTTP + JSON)

PHP

HTTP +
JSON

Erlang

Web Server

l admin

Gateway

~N

Message
Queue

N

/

Call-outs (HTTP + JSON)

PHP

HTTP +
JSON

Web Server

o™

Erlang

GateV " Mes

Credentials

JL

Management

The
Boss

Gateway

Gateway

Gateway

Consistent
Hashing

Gateway

Monitoring

Example counters:
Number of connected users
Number of queues
Messages routed per second

Round trip time for routed messages
Distributed clock work-around!

Disconnects and other error events

o

AFD01781 - img-supervisor - Load Average

h

A iy
ﬁu’l'l‘

| _
kL

[

|'l
Vil

1§00 2000 22100 00:

Host: | AFONM781 (img-bor
Path:

Submit
Result

Aggregate Node Stats

Ping All Hosts

55)

Time: 2010-12-02 16:30.07

Host Status
AF001603
AFO001672
AFO001674
AF001675
AFD01676
AFO001707
AFO001781
AFO001762
AF001783
AFO001851
AF001852

node
node
node
node
node
node
node
node
node
node

node

is
is
is
is
is
is
is
is
is
is

is

Message

available and
available and
available and
available and
available and
available and
available and
available and
available and
available and

available and

accepting
accepting
accepting
accepting
accepting
accepting
accepting
accepting
accepting
accepting

accepting

i i
00 02:00 0400 06:00 0300 10:00 12:00 14:00

connections.
connections.
connections.
connections.
connections.
connections.
connections.
connections.
connections.
connections.

connections.

Section: Problem Cases

= User goes silent
= Second user connection
=~ Node crashes

= Gateway crashes
=~ Reliable messages
= Firewalls

=~ Build and test

User Goes Silent

= Some TCP connections will stop
(bad WiFi, firewalls, etc)

= We use a ping message

=~ Both ends separately detect
ping failure

This means one end detects it
before the other

Second User Connection

Currently connected user
makes a new connection

To another gateway
because of load balancing
A user-specific queue
arbitrates

Queues are serialized:
there is always a winner

Node Crashes

State is ephemeral
it's lost when machine is lost

A user "management queue”
contains all subscription state

If the home queue node dies,
the user is logged out

If a queue the user is subscribed to dies, the
user is auto-unsubscribed (client has to deal)

Gateway Crashes

When a gateway crashes
client will reconnect

History allow us to avoid
re-sending for quick reconnects

The application above the
queue API doesn’t notice

Erlang message send does not report error
Monitor nodes to remove stale listeners

Build and Test

Continuous Integration and
Continuous Deployment
Had to build our own systems
Erlang In-place Code Upgrades
Too heavy, designed for "6 month” upgrade cycles
Use fail-over instead (similar to Apache graceful)

Load testing at scale
“Dark launch” to existing users

@jwatte / #erlangfactory

Build and Test contd.

GNU make

Auto-discovers everything as */src/*.erl
No recursion or autotools
Deals with proto -> .erl/.hrl, etc

Eunit — built-in, easy to write tests
Erlymock — mocks more complex functions

Python-based integration test runner
Start X queue nodes, Y gateway nodes, ...

Section: Future y

_NA
. Ny 4
Replication <);
Similar to fail-over | '
Limits of Scalability (?) —_—

M x N (Gateways x Queues) stops at some point

Open Source

We would like to open-source what we can
Protobuf for PHP and Erlang?
IMQ core? (not surrounding application server)

QA

Questions?

Survey
If you found this helpful, please use a green card
If this sucked, don’t use a green card

@jwatte
jwatte@imvu.com
IMVU is a great place to work, and we’re hiring!

mailto:jwatte@imvu.com
mailto:jwatte@imvu.com
mailto:jwatte@imvu.com
mailto:jwatte@imvu.com

