
Large-scale Game Messaging in
Erlang at IMVU

Jon Watte
Technical Director, IMVU Inc

@jwatte / #erlangfactory

Presentation Overview

 Describe the problem

 Low-latency game messaging and state distribution

 Survey available solutions

 Quick mention of also-rans

 Dive into implementation

 Erlang!

 Discuss gotchas

 Speculate about the future

From Chat to Games

Context
Web

Servers
HTTP

Game
Servers
HTTP

Databases

Caching

Caching

Load
Balancers

Load
Balancers

Long Poll

 Any-to-any messaging with
ad-hoc structure

 Chat; Events; Input/Control

 Lightweight (in-RAM) state
maintenance

 Scores; Dice; Equipment

What Do We Want?

New Building Blocks

 Queues provide a sane view of distributed state
for developers building games

 Two kinds of messaging:

 Events (edge triggered, “messages”)

 State (level triggered, “updates”)

 Expressed as “mounts”

 Integrated into a bigger system

From Long-poll to Real-time

Web
Servers

Game
Servers

Databases

Caching

Caching

Load
Balancers

Load
Balancers

Long Poll

Connection
Gateways

Message
Queues

Today‟s
Talk

Performance Requirements

 Simultaneous user count:

 80,000 when we started

 150,000 today

 1,000,000 design goal

 Real-time performance (the main driving requirement)

 Lower than 100ms end-to-end through the system

 Queue creates and join/leaves (kill a lot of contenders)

 >500,000 creates/day when started

 >20,000,000 creates/day design goal

Also-rans: Existing Wheels

 AMQP, JMS: Qpid, Rabbit, ZeroMQ, BEA, IBM etc
 Poor user and authentication model

 Expensive queues

 IRC
 Spanning Tree; Netsplits; no state

 XMPP / Jabber
 Protocol doesn‟t scale in federation

 Gtalk, AIM, MSN Msgr, Yahoo Msgr
 If only we could buy one of these!

Our Wheel is Rounder!

 Inspired by the 1,000,000-user mochiweb app

 http://www.metabrew.com/article/a-million-user-
comet-application-with-mochiweb-part-1

 A purpose-built general system

 Written in Erlang

 @jwatte / #erlangfactory

http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1

Section: Implementation

 Journey of a message

 Anatomy of a queue

 Scaling across machines

 Erlang

The Journey of a Message

Gateway
Gateway

Queue Node Gateway

The Journey of a Message

Message in Queue:
/room/123

Mount: chat

Data: Hello, World!

Gateway for User

Find node for
/room/123

Queue Node

Find queue
/room/123

Queue Process

List of
subscribers

Gateway for User

Forward
message

Validation

Anatomy of a Queue
Queue Name: /room/123

Mount
Type: message
Name: chat

User A: I win.
User B: OMG
Pwnies!
User A: Take that!
…

Mount
Type: state
Name: scores

User A: 3220
User B: 1200

Subscriber List

User A @
Gateway C

User B @
Gateway B

A Single Machine Isn‟t Enough

 1,000,000 users, 1 machine?

 25 GB/s memory bus

 40 GB memory (40 kB/user)

 Touched twice per message

 one message per is 3,400 ms

 @jwatte / #erlangfactory

Scale Across Machines

Gateway

Gateway

Gateway

Gateway

Queues

Queues

Queues

Queues

Internet

Consistent
Hashing

Consistent Hashing
 The Gateway maps queue name -> node

 This is done using a fixed hash function

 A prefix of the output bits of the hash function is used as a
look-up into a table, with a minimum of 8 buckets per
node

 Load differential is 8:9 or better (down to 15:16)

 Updating the map of buckets -> nodes is managed
centrally

Node A Node B Node C Node D Node E Node F

Hash(“/room/123”) = 0xaf5…

Consistent Hash Table Update

 Minimizes amount of data shifted

 If nodes have more than 8 buckets, steal 1/N
of all buckets from those with the most and
assign to new target

 If not, split each bucket, then steal 1/N of all
buckets and assign to new target

Erlang

 Developed in „80s by Ericsson for phone switches

 Reliability, scalability, and communications

 Prolog-based functional syntax (no braces!)

 25% the code of equivalent C++

 Parallel Communicating Processes

 Erlang processes much cheaper than C++ threads

 (Almost) No Mutable Data

 No data race conditions

 Each process separately garbage collected

Section: Details

 Load Management

 Marshalling

 RPC / Call-outs

 Hot Adds and Fail-over

 The Boss!

 Monitoring

HAProxy

Load Management (HAProxy)

Gateway

Gateway

Gateway

Gateway

Queues

Queues

Queues

Queues

Internet

Consistent
Hashing

HAProxy

Marshalling (protobuf)

message MsgG2cResult {

 required uint32 op_id = 1;

 required uint32 status = 2;

 optional string error_message = 3;

}

RPC (HTTP + JSON)

Web Server

Gateway

PHP

HTTP +
JSON

Erlang
Message
Queue

admin

Call-outs (HTTP + JSON)

PHP

HTTP +
JSON

Erlang

Web Server

Message Queue

Mount

Rules

Gateway

Credentials

Management

The
Boss

Gateway

Gateway

Gateway

Gateway

Queues

Queues

Queues

Consistent
Hashing

Queues

Monitoring

 Example counters:

 Number of connected users

 Number of queues

 Messages routed per second

 Round trip time for routed messages

 Distributed clock work-around!

 Disconnects and other error events

Section: Problem Cases

 User goes silent

 Second user connection

 Node crashes

 Gateway crashes

 Reliable messages

 Firewalls

 Build and test

User Goes Silent

 Some TCP connections will stop
 (bad WiFi, firewalls, etc)

 We use a ping message

 Both ends separately detect
ping failure

 This means one end detects it
before the other

Second User Connection

 Currently connected user
makes a new connection

 To another gateway
because of load balancing

 A user-specific queue
arbitrates

 Queues are serialized:
there is always a winner

 State is ephemeral
it‟s lost when machine is lost

 A user “management queue”
contains all subscription state

 If the home queue node dies,
the user is logged out

 If a queue the user is subscribed to dies, the
user is auto-unsubscribed (client has to deal)

Node Crashes

Gateway Crashes

 When a gateway crashes
client will reconnect

 History allow us to avoid
re-sending for quick reconnects

 The application above the
queue API doesn’t notice

 Erlang message send does not report error

 Monitor nodes to remove stale listeners

Build and Test

 Continuous Integration and
Continuous Deployment

 Had to build our own systems

 Erlang In-place Code Upgrades

 Too heavy, designed for “6 month” upgrade cycles

 Use fail-over instead (similar to Apache graceful)

 Load testing at scale

 “Dark launch” to existing users

 @jwatte / #erlangfactory

Build and Test contd.

 GNU make

 Auto-discovers everything as */src/*.erl

 No recursion or autotools

 Deals with proto -> .erl/.hrl, etc

 Eunit – built-in, easy to write tests

 Erlymock – mocks more complex functions

 Python-based integration test runner

 Start X queue nodes, Y gateway nodes, …

Section: Future

 Replication

 Similar to fail-over

 Limits of Scalability (?)

 M x N (Gateways x Queues) stops at some point

 Open Source

 We would like to open-source what we can

 Protobuf for PHP and Erlang?

 IMQ core? (not surrounding application server)

Q&A

 Questions?

 Survey

 If you found this helpful, please use a green card

 If this sucked, don‟t use a green card

 @jwatte

 jwatte@imvu.com

 IMVU is a great place to work, and we‟re hiring!

mailto:jwatte@imvu.com
mailto:jwatte@imvu.com
mailto:jwatte@imvu.com
mailto:jwatte@imvu.com

