
Large-scale Game Messaging in
Erlang at IMVU

Jon Watte
Technical Director, IMVU Inc

@jwatte / #erlangfactory

Presentation Overview

 Describe the problem

 Low-latency game messaging and state distribution

 Survey available solutions

 Quick mention of also-rans

 Dive into implementation

 Erlang!

 Discuss gotchas

 Speculate about the future

From Chat to Games

Context
Web

Servers
HTTP

Game
Servers
HTTP

Databases

Caching

Caching

Load
Balancers

Load
Balancers

Long Poll

 Any-to-any messaging with
ad-hoc structure

 Chat; Events; Input/Control

 Lightweight (in-RAM) state
maintenance

 Scores; Dice; Equipment

What Do We Want?

New Building Blocks

 Queues provide a sane view of distributed state
for developers building games

 Two kinds of messaging:

 Events (edge triggered, “messages”)

 State (level triggered, “updates”)

 Expressed as “mounts”

 Integrated into a bigger system

From Long-poll to Real-time

Web
Servers

Game
Servers

Databases

Caching

Caching

Load
Balancers

Load
Balancers

Long Poll

Connection
Gateways

Message
Queues

Today‟s
Talk

Performance Requirements

 Simultaneous user count:

 80,000 when we started

 150,000 today

 1,000,000 design goal

 Real-time performance (the main driving requirement)

 Lower than 100ms end-to-end through the system

 Queue creates and join/leaves (kill a lot of contenders)

 >500,000 creates/day when started

 >20,000,000 creates/day design goal

Also-rans: Existing Wheels

 AMQP, JMS: Qpid, Rabbit, ZeroMQ, BEA, IBM etc
 Poor user and authentication model

 Expensive queues

 IRC
 Spanning Tree; Netsplits; no state

 XMPP / Jabber
 Protocol doesn‟t scale in federation

 Gtalk, AIM, MSN Msgr, Yahoo Msgr
 If only we could buy one of these!

Our Wheel is Rounder!

 Inspired by the 1,000,000-user mochiweb app

 http://www.metabrew.com/article/a-million-user-
comet-application-with-mochiweb-part-1

 A purpose-built general system

 Written in Erlang

 @jwatte / #erlangfactory

http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-1

Section: Implementation

 Journey of a message

 Anatomy of a queue

 Scaling across machines

 Erlang

The Journey of a Message

Gateway
Gateway

Queue Node Gateway

The Journey of a Message

Message in Queue:
/room/123

Mount: chat

Data: Hello, World!

Gateway for User

Find node for
/room/123

Queue Node

Find queue
/room/123

Queue Process

List of
subscribers

Gateway for User

Forward
message

Validation

Anatomy of a Queue
Queue Name: /room/123

Mount
Type: message
Name: chat

User A: I win.
User B: OMG
Pwnies!
User A: Take that!
…

Mount
Type: state
Name: scores

User A: 3220
User B: 1200

Subscriber List

User A @
Gateway C

User B @
Gateway B

A Single Machine Isn‟t Enough

 1,000,000 users, 1 machine?

 25 GB/s memory bus

 40 GB memory (40 kB/user)

 Touched twice per message

 one message per is 3,400 ms

 @jwatte / #erlangfactory

Scale Across Machines

Gateway

Gateway

Gateway

Gateway

Queues

Queues

Queues

Queues

Internet

Consistent
Hashing

Consistent Hashing
 The Gateway maps queue name -> node

 This is done using a fixed hash function

 A prefix of the output bits of the hash function is used as a
look-up into a table, with a minimum of 8 buckets per
node

 Load differential is 8:9 or better (down to 15:16)

 Updating the map of buckets -> nodes is managed
centrally

Node A Node B Node C Node D Node E Node F

Hash(“/room/123”) = 0xaf5…

Consistent Hash Table Update

 Minimizes amount of data shifted

 If nodes have more than 8 buckets, steal 1/N
of all buckets from those with the most and
assign to new target

 If not, split each bucket, then steal 1/N of all
buckets and assign to new target

Erlang

 Developed in „80s by Ericsson for phone switches

 Reliability, scalability, and communications

 Prolog-based functional syntax (no braces!)

 25% the code of equivalent C++

 Parallel Communicating Processes

 Erlang processes much cheaper than C++ threads

 (Almost) No Mutable Data

 No data race conditions

 Each process separately garbage collected

Section: Details

 Load Management

 Marshalling

 RPC / Call-outs

 Hot Adds and Fail-over

 The Boss!

 Monitoring

HAProxy

Load Management (HAProxy)

Gateway

Gateway

Gateway

Gateway

Queues

Queues

Queues

Queues

Internet

Consistent
Hashing

HAProxy

Marshalling (protobuf)

message MsgG2cResult {

 required uint32 op_id = 1;

 required uint32 status = 2;

 optional string error_message = 3;

}

RPC (HTTP + JSON)

Web Server

Gateway

PHP

HTTP +
JSON

Erlang
Message
Queue

admin

Call-outs (HTTP + JSON)

PHP

HTTP +
JSON

Erlang

Web Server

Message Queue

Mount

Rules

Gateway

Credentials

Management

The
Boss

Gateway

Gateway

Gateway

Gateway

Queues

Queues

Queues

Consistent
Hashing

Queues

Monitoring

 Example counters:

 Number of connected users

 Number of queues

 Messages routed per second

 Round trip time for routed messages

 Distributed clock work-around!

 Disconnects and other error events

Section: Problem Cases

 User goes silent

 Second user connection

 Node crashes

 Gateway crashes

 Reliable messages

 Firewalls

 Build and test

User Goes Silent

 Some TCP connections will stop
 (bad WiFi, firewalls, etc)

 We use a ping message

 Both ends separately detect
ping failure

 This means one end detects it
before the other

Second User Connection

 Currently connected user
makes a new connection

 To another gateway
because of load balancing

 A user-specific queue
arbitrates

 Queues are serialized:
there is always a winner

 State is ephemeral
it‟s lost when machine is lost

 A user “management queue”
contains all subscription state

 If the home queue node dies,
the user is logged out

 If a queue the user is subscribed to dies, the
user is auto-unsubscribed (client has to deal)

Node Crashes

Gateway Crashes

 When a gateway crashes
client will reconnect

 History allow us to avoid
re-sending for quick reconnects

 The application above the
queue API doesn’t notice

 Erlang message send does not report error

 Monitor nodes to remove stale listeners

Build and Test

 Continuous Integration and
Continuous Deployment

 Had to build our own systems

 Erlang In-place Code Upgrades

 Too heavy, designed for “6 month” upgrade cycles

 Use fail-over instead (similar to Apache graceful)

 Load testing at scale

 “Dark launch” to existing users

 @jwatte / #erlangfactory

Build and Test contd.

 GNU make

 Auto-discovers everything as */src/*.erl

 No recursion or autotools

 Deals with proto -> .erl/.hrl, etc

 Eunit – built-in, easy to write tests

 Erlymock – mocks more complex functions

 Python-based integration test runner

 Start X queue nodes, Y gateway nodes, …

Section: Future

 Replication

 Similar to fail-over

 Limits of Scalability (?)

 M x N (Gateways x Queues) stops at some point

 Open Source

 We would like to open-source what we can

 Protobuf for PHP and Erlang?

 IMQ core? (not surrounding application server)

Q&A

 Questions?

 Survey

 If you found this helpful, please use a green card

 If this sucked, don‟t use a green card

 @jwatte

 jwatte@imvu.com

 IMVU is a great place to work, and we‟re hiring!

mailto:jwatte@imvu.com
mailto:jwatte@imvu.com
mailto:jwatte@imvu.com
mailto:jwatte@imvu.com

