
Erlando
Imitation (of syntax)

is the most sincere form of flattery
Matthew Sackman

matthew@rabbitmq.com

E S:

Recent blog post by David Pollak:

So, why is Erlang not part of the mainstream? Why aren’t
developers flocking to it?

First, it’s ugly. I never really understood how aesthetics
impact developers, but beauty on the developer’s screen
does lead to better results. . .

Examples: record syntax; it’s a parenthesis-ridden language;
numbered variables. . .

E S:

Recent blog post by David Pollak:

Fourth, Erlang is all immutable all the time. This is hard
to grasp and work with, especially coming from a Java or
Ruby background. And without state monads and other
pieces that the Haskell folks built into the libraries, the only
way to carry state around your application is on the stack via
recursion within processes/Actors and message passing. . .

Immutable: tough – get used to functional languages
Lack of machinery for abstractions: we can fix that. . .

E S:

Recent blog post by David Pollak:

Fourth, Erlang is all immutable all the time. This is hard
to grasp and work with, especially coming from a Java or
Ruby background. And without state monads and other
pieces that the Haskell folks built into the libraries, the only
way to carry state around your application is on the stack via
recursion within processes/Actors and message passing. . .

Immutable: tough – get used to functional languages

Lack of machinery for abstractions: we can fix that. . .

E S:

Recent blog post by David Pollak:

Fourth, Erlang is all immutable all the time. This is hard
to grasp and work with, especially coming from a Java or
Ruby background. And without state monads and other
pieces that the Haskell folks built into the libraries, the only
way to carry state around your application is on the stack via
recursion within processes/Actors and message passing. . .

Immutable: tough – get used to functional languages
Lack of machinery for abstractions: we can fix that. . .

E

E
I A set of extensions for Erlang
I Implemented as parse-transformers (just like QLC)
I cut – implements Scheme-like cuts (cheap syntax for partial

application / currying)
I do – implements Haskell-like do-notation
I import-as – very simple remote function importing with

aliasing

C

info_all(VHostPath, Items) ->
map(VHostPath, fun (Q) -> info(Q, Items) end).

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(

BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->

MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }

end.

C

info_all(VHostPath, Items) ->
map(VHostPath, fun (Q) -> info(Q, Items) end).

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(

BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->

MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }

end.

C

info_all(VHostPath, Items) ->
map(VHostPath, fun (Q) -> info(Q, Items) end).

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(

BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->

MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }

end.

C

I All three cases show funs being created to supply parameters
to simple expressions.

I Really, this is partial application: some parameters to the
expressions won’t be known until later on.

I The funs add quite a lot of noise. . .
I How about changing the syntax? Lose some flexibility, but gain

brievity. . .

C

I All three cases show funs being created to supply parameters
to simple expressions.

I Really, this is partial application: some parameters to the
expressions won’t be known until later on.

I The funs add quite a lot of noise. . .
I How about changing the syntax? Lose some flexibility, but gain

brievity. . .

C

I All three cases show funs being created to supply parameters
to simple expressions.

I Really, this is partial application: some parameters to the
expressions won’t be known until later on.

I The funs add quite a lot of noise. . .

I How about changing the syntax? Lose some flexibility, but gain
brievity. . .

C

I All three cases show funs being created to supply parameters
to simple expressions.

I Really, this is partial application: some parameters to the
expressions won’t be known until later on.

I The funs add quite a lot of noise. . .
I How about changing the syntax? Lose some flexibility, but gain

brievity. . .

C

T _

I _ can already appear in patterns. That is unchanged.
I Cut allows _ to appear outside of patterns.
I Where a _ is found which isn’t in a pattern, it becomes a

parameter to the expression in which it directly appears.
I Multiple _s can appear in the same expression: multiple

parameters

C

info_all(VHostPath, Items) ->
map(VHostPath, fun (Q) -> info(Q, Items) end).

info_all(VHostPath, Items) -> map(VHostPath, info(_, Items)).

C

info_all(VHostPath, Items) ->
map(VHostPath, fun (Q) -> info(Q, Items) end).

info_all(VHostPath, Items) -> map(VHostPath, info(_, Items)).

C

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(

BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

backing_queue_timeout(State = #q{backing_queue = BQ}) ->
run_backing_queue(BQ, _:timeout(_), State).

C

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(

BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

backing_queue_timeout(State = #q{backing_queue = BQ}) ->
run_backing_queue(BQ, _:timeout(_), State).

C

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->

MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }

end.

reset_msg_expiry_fun(TTL) ->
_ #message_properties { expiry = calculate_msg_expiry(TTL) }.

C

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->

MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }

end.

reset_msg_expiry_fun(TTL) ->
_ #message_properties { expiry = calculate_msg_expiry(TTL) }.

C !

I Should there be a phantom cut marker to make it clear a cut is
in use?

Menu = #menu{ breakfast = Toast, dinner = _ }
versus

Menu = cut(#menu{ breakfast = Toast, dinner = _ })

I Cut doesn’t excuse poorly named variables! How about
MenuCtr or MenuFun or PendingDinner?

C !

I Should there be a phantom cut marker to make it clear a cut is
in use?
Menu = #menu{ breakfast = Toast, dinner = _ }

versus
Menu = cut(#menu{ breakfast = Toast, dinner = _ })

I Cut doesn’t excuse poorly named variables! How about
MenuCtr or MenuFun or PendingDinner?

C !

I Should there be a phantom cut marker to make it clear a cut is
in use?
Menu = #menu{ breakfast = Toast, dinner = _ }

versus
Menu = cut(#menu{ breakfast = Toast, dinner = _ })

I Cut doesn’t excuse poorly named variables! How about
MenuCtr or MenuFun or PendingDinner?

C !

I Why limit it to only shallow expressions?
NotAFun = {a, b, {c, _, e}}

I Cut is not a general purpose replacement of funs!
I However, time will tell!

C !

I Why limit it to only shallow expressions?
NotAFun = {a, b, {c, _, e}}

I Cut is not a general purpose replacement of funs!

I However, time will tell!

C !

I Why limit it to only shallow expressions?
NotAFun = {a, b, {c, _, e}}

I Cut is not a general purpose replacement of funs!
I However, time will tell!

T C G

Because a simple fun is being constructed by the cut, the
arguments are evaluated prior to the cut function.

f1(_, _) -> io:format("in f1~n").

test() ->
F = f1(io:format("test line 1~n"), _),
F(io:format("test line 2~n")).

will print out

test line 2
test line 1
in f1

M

I Tuples

F = {_, 3},
{a, 3} = F(a).

M

I Lists

dbl_cons(List) -> [_, _ | List].

test() ->
F = dbl_cons([33]),
[7, 8, 33] = F(7, 8).

I Lists in tail position are not sub-expressions!
A = [a, b | [c, d | [e]]]
is exactly the same (right from the Erlang parser onwards) as:
A = [a, b, c, d, e]

M

I Lists

dbl_cons(List) -> [_, _ | List].

test() ->
F = dbl_cons([33]),
[7, 8, 33] = F(7, 8).

I Lists in tail position are not sub-expressions!
A = [a, b | [c, d | [e]]]
is exactly the same (right from the Erlang parser onwards) as:
A = [a, b, c, d, e]

M

I Records

-record(vector, { x, y, z }).

test() ->
GetZ = _#vector.z,
7 = GetZ(#vector { z = 7 }),
SetX = _#vector{x = _},
V = #vector{ x = 5, y = 4 } =

SetX(#vector{ y = 4 }, 5).

M

I Case

F = case _ of
N when is_integer(N) -> N + N;
N -> N

end,
10 = F(5),
ok = F(ok).

C

I Passing around funs is common: callbacks etc.
I Construction of those funs is frequently partial application of

parameters to some simple expression.
I Cut helps make those cases less verbose.
I Cut also eases some pain of record syntax.

A : import_as

import import_as

I The -import(my_module, [f/3, g/2, h/4]) attribute
allows you to import my_module:f/3, my_module:g/2 and
my_module:h/4 into the current module.

I You can then treat them as normal functions, local to the
module.

I But you can’t import them with aliasing. Thus, this goes wrong:

-import(my_mod, [size/1]).
-import(my_other_mod, [size/1]).

A : import_as

import import_as

I The -import(my_module, [f/3, g/2, h/4]) attribute
allows you to import my_module:f/3, my_module:g/2 and
my_module:h/4 into the current module.

I You can then treat them as normal functions, local to the
module.

I But you can’t import them with aliasing. Thus, this goes wrong:

-import(my_mod, [size/1]).
-import(my_other_mod, [size/1]).

A : import_as

import import_as

I Solved!

-import_as({my_mod, [{size/1, m_size}]})
-import_as({my_other_mod, [{size/1, o_size}]})

I Literally, we inject:

m_size(A) -> my_mod:size(A).
o_size(A) -> my_other_mod:size(A).

Thus you can use fun abstractions (or cuts!) on them, you can
export them, etc: they are real local functions.

A : import_as

import import_as

I Solved!

-import_as({my_mod, [{size/1, m_size}]})
-import_as({my_other_mod, [{size/1, o_size}]})

I Literally, we inject:

m_size(A) -> my_mod:size(A).
o_size(A) -> my_other_mod:size(A).

Thus you can use fun abstractions (or cuts!) on them, you can
export them, etc: they are real local functions.

D- M

M:
I Monads are widely used in Haskell, where they are essential in

order to control sequencing of operations which may have
side effects.

I They are not essential in Erlang.
I Monads provide very powerful control-flow and abstraction

mechanisms which are of benefit to all languages.
I In Erlang, essentially, it’s a programmatic comma!

M:

Goal: control whether each statement is evaluated.

my_function() ->
A = foo(),
B = bar(A, dog),
ok.

M:

Goal: control whether each statement is evaluated.

my_function() ->
A = foo(),
comma(),
B = bar(A, dog),
comma(),
ok.

M:

Goal: control whether each statement is evaluated.

my_function() ->
comma(foo(),

fun (A) -> comma(bar(A, dog),
fun (B) -> ok end)).

M:

Goal: control whether each statement is evaluated.

my_function() ->
comma(foo(),

fun (A) -> comma(bar(A, dog),
fun (B) -> ok end)).

As defined, the comma/2 function is the monadic function »=/2. A
monad needs only three functions: »=/2, return/1 and fail/1.

D-

. M

do([Monad ||
A <- foo(),
B <- bar(A, dog),
ok]).

Readable, straightforward. Parse-transformer rewrites into:

Monad:’>>=’(foo(),
fun (A) -> Monad:’>>=’(bar(A, dog),

fun (B) -> ok end)).

D-

. A M
I The do-block is parameterised by the type of monad we want

to use.
I Within a do-block, calls to return/1 and fail/1 are rewritten

to Monad:return/1 and Monad:fail/1.

T IM

C,

-module(identity_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’(X, Fun) -> Fun(X).
return(X) -> X.
fail(X) -> throw({error, X}).

T IM

C,

-module(identity_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’(X, Fun) -> Fun(X).
return(X) -> X.
fail(X) -> throw({error, X}).

do([identity_m ||
A <- foo(),
B <- bar(A, dog),
ok]).

T IM

C,

-module(identity_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’(X, Fun) -> Fun(X).
return(X) -> X.
fail(X) -> throw({error, X}).

identity_m:’»=’(
foo(), fun (A) -> identity_m:’»=’(

bar(A, dog), fun (B) -> ok end)).

T IM

C,

-module(identity_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’(X, Fun) -> Fun(X).
return(X) -> X.
fail(X) -> throw({error, X}).

A = foo(),
B = bar(A, dog),
ok.

TMM

M ?

-module(maybe_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’({just, X}, Fun) -> Fun(X);
’>>=’(nothing, _Fun) -> nothing.

return(X) -> {just, X}.
fail(_X) -> nothing.

Do not continue if an expression returns nothing.

TMM

M ?

-module(maybe_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’({just, X}, Fun) -> Fun(X);
’>>=’(nothing, _Fun) -> nothing.

return(X) -> {just, X}.
fail(_X) -> nothing.

Do not continue if an expression returns nothing.

TMM

if_safe_div_zero(X, Y, Fun) ->
do([maybe_m ||

Result <-
case Y == 0 of

true -> fail("Cannot divide by zero");
false -> return(X / Y)

end,
return(Fun(Result))]).

{just, 6} = if_safe_div_zero(10, 5, _+4)

nothing = if_safe_div_zero(10, 0, _+4)

TMM

if_safe_div_zero(X, Y, Fun) ->
do([maybe_m ||

Result <-
case Y == 0 of

true -> fail("Cannot divide by zero");
false -> return(X / Y)

end,
return(Fun(Result))]).

{just, 6} = if_safe_div_zero(10, 5, _+4)

nothing = if_safe_div_zero(10, 0, _+4)

TMM

if_safe_div_zero(X, Y, Fun) ->
do([maybe_m ||

Result <-
case Y == 0 of

true -> fail("Cannot divide by zero");
false -> return(X / Y)

end,
return(Fun(Result))]).

{just, 6} = if_safe_div_zero(10, 5, _+4)

nothing = if_safe_div_zero(10, 0, _+4)

T EM

J M

-module(error_m).
-behaviour(monad).
-export([’>>=’/2, return/1, fail/1]).

’>>=’({error, _Err} = Error, _Fun) -> Error;
’>>=’({ok, Result}, Fun) -> Fun(Result);
’>>=’(ok, Fun) -> Fun(ok).

return(ok) -> ok.
return(X) -> {ok, X}.
fail(X) -> {error, X}.

T EM

I

Result = do([error_m ||
Hdl <- file:open(Path, Modes),
Data <- file:read(Hdl, BytesToRead),
file:write(Hdl, DataToWrite),
file:sync(Hdl),
file:close(Hdl),
file:rename(Path, Path2),
file:delete(Path),
return(Data)]).

Result is always either {ok, Data} or {error, Reason},
regardless of where the failure happened. How many case
statements would you need to achieve the same without monads?!

T EM

I

Result = do([error_m ||
Hdl <- file:open(Path, Modes),
Data <- file:read(Hdl, BytesToRead),
file:write(Hdl, DataToWrite),
file:sync(Hdl),
file:close(Hdl),
file:rename(Path, Path2),
file:delete(Path),
return(Data)]).

Result is always either {ok, Data} or {error, Reason},
regardless of where the failure happened. How many case
statements would you need to achieve the same without monads?!

G : T S T

I Monadic transformers embue monads with additional
functionality.

I Imagine a monad within a monad, where the inner monad can
reach out and interact with the outer monad.

I One such outer monad is the State transformer.
I This allows manipulation of state: put sets the current state,

whilst get returns the current state. modify takes a function
that takes the state and returns a new state.

G : T S T

M : V C, V
U

State1 = init(Dimensions),
State2 = plant_seeds(SeedCount, State1),
{DidFlood, State3} = pour_on_water(WaterVolume, State2),
State4 = apply_sunlight(Time, State3),
{DidFlood2, State5} = pour_on_water(WaterVolume, State4),
{Crop, State6} = harvest(State5),

G : T S T

A S I

StateT = state_t:new(identity_m),
SM = StateT:modify(_),
SMR = StateT:modify_and_return(_),
StateT:exec(

do([StateT ||
StateT:put(init(Dimensions)),
SM(plant_seeds(SeedCount, _)),
DidFlood <- SMR(pour_on_water(WaterVolume, _)),
SM(apply_sunlight(Time, _)),
DidFlood2 <- SMR(pour_on_water(WaterVolume, _)),
Crop <- SMR(harvest(_)),
]), undefined).

Look! No numbered state variables!

G : T S T

A S I

StateT = state_t:new(identity_m),
SM = StateT:modify(_),
SMR = StateT:modify_and_return(_),
StateT:exec(

do([StateT ||
StateT:put(init(Dimensions)),
SM(plant_seeds(SeedCount, _)),
DidFlood <- SMR(pour_on_water(WaterVolume, _)),
SM(apply_sunlight(Time, _)),
DidFlood2 <- SMR(pour_on_water(WaterVolume, _)),
Crop <- SMR(harvest(_)),
]), undefined).

Look! No numbered state variables!

D

I Monads are very powerful and flexible.
I Takes some practise to get used to, and harder due to lack of

useful type checker.
I Do-notation essential to making monads at all pleasant.
I Implementation very similar to Haskell, so mechanical

translation of Haskell’s libraries quite possible.

E: T F

W’ ?
I Type classes (value based dynamic dispatch)
I Ability to define infix functions
I Convenience mechanisms for records, e.g.

#state { foo, bar, baz }
≡ #state { foo = Foo, bar = Bar, baz = Baz }

I Whole module importing with aliasing

E

W ?
http://hg.rabbitmq.com/erlando or
http://github.com/rabbitmq/erlando

T E
W !

Thank you

Questions?

