Erlang Solutions Ltd.

The Erlang Rationale

Robert Virding

w © 1999-201 | Erlang Solutions Ltd.



A Rationale

Rationale - n. 1. Fundamental reasons; the basis. 2.
An exposition of principles or reasons.

Why would we want one?

- Help users understand how/why to use various
features

- Help language designers
- Help implementors
- Help people wishing to extend language

(S% © 1999-201 | Erlang Solutions Ltd.



First Principles

Lightweight concurrency

- Must handle a large number of processes

- Process creation, context switching and inter-process communication
must be cheap and fast.

Asynchronous communication

Process isolation

- What happens in one process must not affect any other process.

Error handling

- The system must be able to detect and handle errors.

Continuous evolution of the system

- We want to upgrade the system while running and with no loss of
service.

é%/ © 1999-201 | Erlang Solutions Ltd.



First Principles

Also
. High level language to get real benefits.

« The language should be simple

- Simple in the sense that there should be a small number of basic
principles, if these are right then the language will be powerful but
easy to comprehend and use. Small is good.

- The language should be simple to understand and program.

. Provide tools for building systems, not solutions

-  We would provide the basic operations needed for building
communication protocols and error handling

w © 1999-201 | Erlang Solutions Ltd.



Trivial code example

ringing_a_side(Addr, B_Pid, B_Addr) —>
receive

on_hook —>
B Pid ! cleared,
tele_os:stop_tone(Addr),
idle(Addr);

answered —>
tele_os:stop_tone(Addr),
tele_os:connect(Addr, B_Addr),
speech(Addr, B_Pid, B_Addr);

{seize,Pid} —>
Pid ! rejected,
ringing_a_side(Addr, B_Pid, B_Addr);

>
ringing_a_side(Addr, B_Pid, B_Addr)

é% © 1999-201 | Erlang Solutions Ltd.



Trivial code example

ringing_b_side(Addr, A_Pid) —
receive

cleared —>
tele_os:stop_ring(Addr),
idle(Addr);

off_hook —>
tele_os:stop_ring(Addr),
A_Pid ! answered,
speech(Addr, A_Pid, not_used);

{seize,Pid} —>
Pid ! rejected,
ringing_b_side(Addr, A_Pid);

—->

ringing_b_side(Addr, A_Pid)

(S% © 1999-201 | Erlang Solutions Ltd.



Erlang “Things”

Only two basic types of things in Erlang

« Immutable data structures

- Normal Erlang terms

« Processes

- Everything with internal state

. Yes, the process dictionary is a mutable data structure
but not the data in it, and we never really liked it!

(S% © 1999-201 | Erlang Solutions Ltd.



Processes

. A process is something which obeys process
semantics:

Parallel independent execution

Communicates through asynchronous message
passing

Links/monitors for error detection/handling
Obey/transmit exit signals

N.B. Implementation and internal details irrelevant!

6

© 1999-201 | Erlang Solutions Ltd.



Processes

. Everything is run within a process

. All processes are equal - no special or system
processes

« No process hierarchy - flat process space

« Processes are used for many things

- Concurrency
- Managing state

(S% © 1999-201 | Erlang Solutions Ltd.



Process communication

. All process communication by messages
. All process communication asynchronous

« Process BIFs asynchronous

- Only check arguments
- One exception then: sending to registered name!

« Works the same with distribution!

@% © 1999-201 | Erlang Solutions Ltd.



Ports

. "Processes” for communicating with the outside
world

. Obey process semantics

- Message based interface
- Obeys links and exit signals
- Fits in with rest of erlang

« Ports talk to hardware

. Ports need connected process to communicate
with.

CS% © 1999-201 | Erlang Solutions Ltd.



Error handling

Errors will ALWAYS occur!

(S% © 1999-201 | Erlang Solutions Ltd.



Error handling

. Robust systems must always be aware of errors

. Want to avoid writing error checking code
everywhere

. Want to be able to handle process crashes among
cooperating processes

. System must detect, contain and handle errors
. Interact well with process communication

S © 1999-201 | Erlang Solutions Ltd.



Error handling

We just want to

Let it crash!

(S% © 1999-201 | Erlang Solutions Ltd.



Error handling

p Process based
p If one process crashes then all should crash

- Cooperating processes are linked together
- Process crashes propagate along links

p "System’” processes can monitor them and restart
them when necessary

p But sometimes we do need to handle errors
locally

(S% © 1999-201 | Erlang Solutions Ltd. 15



Modules, code and code loading

. Only compiled code

. Module is both the unit of compilation and of all
code handling

- Relatively efficient compilation
- More consistent system when loading code

. Multiple versions of a module

p No inter-module dependencies

@%/ © 1999-201 | Erlang Solutions Ltd.



Modules, code and code loading

. All functions belong to a module
. All modules are equal - no system or special
« No module hierarchy - flat module space

@% © 1999-201 | Erlang Solutions Ltd.



Things missing in early Erlang

. Code handling
« Binaries

e ETS

« Funs

« OTP

« NIFs

w © 1999-201 | Erlang Solutions Ltd.



Distribution

. Based on loosely coupled nodes - like processes
. Completely transparent if desired (almost true)

. Easier with asynchronous communication, so
keep communication and error handling
asynchronous

S © 1999-201 | Erlang Solutions Ltd.



Patterns, pattern matching, guards

. Patterns are a Big Win™ and ubiquitous.

. Data constructors and patterns are the same.

- Rule not broken by new data types!

. Guards added to provide simple tests for
extending pattern matching.

. Adding boolean operators a Good Thing but has
has made the difference between guard tests and
expressions less distinct.

(S%/ © 1999-201 | Erlang Solutions Ltd. 20



Variables, scoping and =

. Variables are just bind-once references to values

. Also inherited Prologs scoping, or rather lack of
scoping, a variable’s scope is the whole function
clause

. Affects pattern matching as already occurring
variables means testing existing value

. = started its life as simple assignment

- Practical to use it to pull apart return values

(S% © 1999-201 | Erlang Solutions Ltd.

21



OTP (Open Telecoms Platform)

Erlang just a language, for building large scale
applications you need:

. A large set of standard libraries

. A set of rules and design patterns for building
robust systems

- Generic behaviours
. And patterns for building new behaviours
. Tools

(S% © 1999-201 | Erlang Solutions Ltd.

22



OTP (Open Telecoms Platform)

Application

Supervisors

Workers

An application, its supervision tree and its workers

- Supervisors ensure robust system by restarting workers

é‘% © 1999-201 | Erlang Solutions Ltd.

23



Thank you

Robert Virding: robert.virding@erlang-solutions.com

S © 1999-201 | Erlang Solutions Ltd. 24


mailto:robert.virding@erlang-solutions.com
mailto:robert.virding@erlang-solutions.com

