
© S e m i o c a s t

Lessons learned
How we use Erlang to analyze millions of messages per day

Erlang Factory Lite Paris

© S e m i o c a s t

A few words about us
What we do with Erlang

© S e m i o c a s t

A few words about us

S e m i o c a s t processes social media conversations to
provide analytics and market research insights

» » » » »

© S e m i o c a s t

Semiocast’s offer

Barometers
Shares of social media conversations
Sentiment analysis and clustering
Topic identification
Ad hoc quantitative indicators

Quantitative studies
ad hoc

Consumer insights
Verbatim research
Clustering of conversations
Mapping of communities and influence analysis

Qualitative studies
ad hoc

Enumeration of social media conversation spaces
Real-time alerts
Daily/Weekly/Monthly reports
Crisis monitoring

Monitoring

Social media monitoring platform (Semioboard)
Technology as a service (API)Tools

© S e m i o c a s t

Semioboard

© S e m i o c a s t

Semioboard

© S e m i o c a s t

Live analysis of comments on TV debates

© S e m i o c a s t

How we ended up using
Erlang

© S e m i o c a s t

How we ended up using Erlang

Discovered Erlang when getting WiFi rabbits to
talk to each other over XMPP (ejabberd) in 2007

Taught OCaml in 2004

Three reasons why we chose Erlang :

- hot code change and inspection

- fault-tolerance

- happy to do functional programming
(gave us a break from Java and C++)

© S e m i o c a s t

How we use Erlang

1352 OTP releases

- 47 applications

- 100K lines of Erlang (without tests)

- 11K lines of C/C++ (mostly glue)

- 1K lines of Java (glue)

~50 ungraduated applications for

- prototyping

- short lived projects

- web-based/command line tools
that run on dev machines

{release, {"Semiocast OTP", "1352"}, {erts, "5.8.4"},
 [
 % erts 5.8.4
 {kernel, "2.14.4"},
 {stdlib, "1.17.4"},
 {mnesia, "4.4.18"},
 {inets, "5.5.2"},
 {sasl, "2.1.9.3"},
 {crypto, "2.0.2.1"},
 {snmp, "4.19"},
 {otp_mibs, "1.0.6"},
 {ssl, "4.1.5"},
 {public_key, "0.12"},
 {xmerl, "1.2.8"},
 {compiler, "4.7.3"},
 {runtime_tools, "1.8.5"},
 {syntax_tools, "1.6.7"},

 % Other libs
 {erlsom, "1.2.1"},
 {mochiweb, "0.167.10"},
 {nitrogen, "2.0.20100531.14"},
 {nprocreg, "0.1"},
 {simple_bridge, "1.0.2"},

 % Semiocast
 {analyzer, "22", load},
 {alien_models, "50", load},
 {alien_uniform_streams, "7", load},
 {api_server, "109", load},
 {aspell, "4", load},
 {binlog, "26", load},
 {certificate_authority, "8", load},
 {chasen, "11", load},
 {chinese_segmenter, "1", load},
 {commonlib, "250", permanent}, % always start commonlib.
 {ctl, "29", permanent}, % always start ctl.
 {dashboard_engine, "55", load},
 {dashboard_storage, "56", load},
 {dashboard_website, "226", load},
 {developer_website, "36", load},
 {engine, "455", load},
 {gate, "79", load},
 {geodb, "5", load},
 {geoip, "2", load},
 {image_magick, "8", load},
 {kdtree, "3", load},
 {kqueue, "1", load},
 {link_grammar_parser, "12", load},
 {memcached, "5", load},
 {mysql, "8", load},
 {nagios, "6", permanent}, % always start nagios.
 {opennlp, "8", load},
 {pgsql, "2", load},
 {pubsubhubbub, "4", load},
 {qr_website, "1", load},
 {re2, "1", load},
 {s_http, "42", load},
 {setproctitle, "2", permanent}, % always start setproctitle.
 {sink, "15", load},
 {sqlite, "9", load},
 {storage, "226", load},
 {svg, "12", load},
 {svm, "1", load},
 {text_ident, "27", load},
 {text_proc, "62", load},
 {titema_website, "7", load},
 {url_server, "8", load},
 {uuid, "6", load},
 {web_common, "14", load},
 {web_gate, "8", load},
 {web_storage, "5", load},
 {wikimedia, "6", load}
]}.

© S e m i o c a s t

A few things we wish we had known about Erlang

A few things we wish we
had known about Erlang

© S e m i o c a s t

Mistake #1:

Creating an erlang process to do a lot of work

- processes should spend most of their time
waiting for messages (gen_server), or do some
intensive work and quickly exit when done
(spawn_link)

- when required, benchmark, as message passing
with the worker process can prove expensive

A few things we wish we had known about Erlang

 Self = self(),
 spawn_link(fun() -> Self ! {language, analyze_language(Text, MD0, Mode)} end),
 spawn_link(fun() -> Self ! {location, analyze_location(MD0, Mode)} end),
 {NProcessedLang, Language} = receive {language, RespLa} -> RespLa end,
 {NProcessedLoc, Location} = receive {location, RespLoc} -> RespLoc end,

 {NProcessedLang, Language} = analyze_language(Text, MD0, Mode),
 {NProcessedLoc, Location} = analyze_location(MD0, Mode),

 Self = self(),
 spawn_link(fun() -> Self ! {language, analyze_language(Text, MD0, Mode)} end),
 spawn_link(fun() -> Self ! {location, analyze_location(MD0, Mode)} end),
 {NProcessedLang, Language} = receive {language, RespLa} -> RespLa end,
 {NProcessedLoc, Location} = receive {location, RespLoc} -> RespLoc end,

 {NProcessedLang, Language} = analyze_language(Text, MD0, Mode),
 {NProcessedLoc, Location} = analyze_location(MD0, Mode),

Faster

© S e m i o c a s t

A few things we wish we had known about Erlang

Mistake #2:

Creating a lot of processes for parallelized
computing

- having more worker processes than schedulers
does not make sense

- it can actually hurt, because processes waiting
for a reply may not have it in time and will fail
with a timeout

© S e m i o c a s t

Thinking OTP

Thinking OTP

© S e m i o c a s t

Thinking OTP

Mistake #3:

Starting processes outside the supervision tree

- gen_server & co. should be used everywhere,
except for very short lived processes (that won’t
be upgraded)

- Every gen_server should be started from a
supervisor

- A real-world supervision design requires
process_flag(trap_exit, true),
monitor/2 and link/1, as well as some
thinking

© S e m i o c a s t

Thinking OTP

Mistake #4:

Thinking obscure comments in the documentation
do not really apply

- When in doubt, source code is handy, and helps
figuring out when we really need to go off the rule

erl -man supervisor

As a rule of thumb Modules should be a list with
one element [Module], where Module is the callback
module, if the child process is a supervisor,
gen_server or gen_fsm

%% @doc Supervisor for the user manager.
-module(user_manager_sup).
-vsn("8").
-behaviour(supervisor).
-include_lib("commonlib/include/types.hrl").
-include("engine_snmp.hrl").

%% Access from supervisor.
-export([start_link/0]).

%% Access from the application.
%% supervisor API.
-export([init/1]).

-define(SHUTDOWN_DELAY, 5000).
% no more than 5 restarts per second.
-define(MAX_RESTARTS, 5).
-define(MAX_RESTARTS_PERIOD, 1).

%%--
%% @doc Start the supervisor.
%%
%% @spec(start_link() -> {ok, pid()} | {error, tuple()})
-spec(start_link/0::() -> {ok, pid()} | {error, tuple()}).
start_link() ->
 supervisor:start_link({local, ?MODULE}, ?MODULE, []).

%%--
%% @doc supervisor init callback.
%%
-spec(init/1::(any()) -> sup_init()).
init(_Args) ->
 UserServerSupSpec = {user_server_sup, % id
 {user_server_sup, start_link, []}, % init function
 permanent, % restart children that crash
 ?SHUTDOWN_DELAY, supervisor,
 [user_server_sup] % modules
 },
 AlienUserServerSupSpec = {alien_user_server_sup, % id
 {alien_user_server_sup, start_link, []}, % init function
 permanent, % restart children that crash
 ?SHUTDOWN_DELAY, supervisor,
 [alien_user_server_sup] % modules
 },
 MailboxServerSupSpec = {mailbox_server_sup, % id
 {mailbox_server_sup, start_link, []}, % init function
 permanent, % restart children that crash
 ?SHUTDOWN_DELAY, supervisor,
 [mailbox_server_sup] % modules
 },
 UserManagerStartChildSemaphore = {user_manager_start_child_semaphore, % id
 {semaphore, start_link, [{local, user_manager_start_child_semaphore}, 75]}, % init function
 transient, % restart children that crash
 ?SHUTDOWN_DELAY, worker,
 [semaphore] % modules
 },
 UserManagerSpec = {user_manager, % id
 {user_manager, start_link, []}, % init function
 transient, % restart children that crash
 ?SHUTDOWN_DELAY, worker,
 [gen_manager, user_manager] % modules
 },
 RestartStrategy = {one_for_one, ?MAX_RESTARTS, ?MAX_RESTARTS_PERIOD},
 % Setup snmp probe for semaphore.
 gen_snmp_agent:set_variable(?SNMP_USER_MANAGER_START_CHILD_SEMAPHORE_WAITING_COUNT, {dynamic,
{gen_server_call, user_manager_start_child_semaphore, waiting_queue_len}}),
 {ok, {RestartStrategy, [UserServerSupSpec, AlienUserServerSupSpec, MailboxServerSupSpec,
UserManagerStartChildSemaphore, UserManagerSpec]}}.

gen_manager is a
gen_server with a callback module

handling code_change messages
(here, user_manager)

© S e m i o c a s t

Thinking OTP

Mistake #5:

Putting everything in a single virtual machine (node) per
server

- Virtual machines may crash

- Code changes can fail and take down the whole
node

- It’s better to separate critical code

- even per server if a crashing node can take a huge
amount of RAM and make other nodes swap

© S e m i o c a s t

Foreign code

Interfacing with foreign code

© S e m i o c a s t

Foreign code

Six ways to interface foreign code with Erlang:

- Linked-In drivers

- External drivers

- NIFs

- os:cmd/1

- C-based distributed node

- Java-based distributed node (jinterface)

We tried them all…

…and are looking forward to future extensions to the
native interface (R15?)

© S e m i o c a s t

Method We use/used for

Linked-in drivers
- aspell
- kqueue (FreeBSD/MacOS X kqueue binding)
- SQLite

External drivers
- ImageMagick
- GeoIP
- WebKit

NIFs
- uuid
- re2 (linear time bound replacement for re)
- bzip2

os:cmd/1 - OpenSSL
- Batik (svg rasterizer in Java)

C-based distributed
node - ruby (we actually bound Rails websites with Erlang at some point)

jinterface - OpenNLP

Foreign code

© S e m i o c a s t

Foreign code

Mistake #6:

Using linked-in drivers for open source code that
could crash/abort

E.g.: ImageMagick will abort on bad input

- External drivers are more suitable when external
library is large, crash-prone or could leak
(sometimes, the leak is in the glue…)

- Passing pointers is possible but requires some
logic, typically binding a pointer to the port

© S e m i o c a s t

Foreign code

Mistake #7:

Using linked-in drivers for I/O intensive code

E.g.: sqlite

- Linked-in driver code is executed within a
scheduler thread. Running for too long will starve
other processes that will timeout, waiting for
messages

- Theoretically, we can use async threads (and we
do with sqlite). However, enabling async threads
(+A) has a huge impact on built-in I/O drivers

- Performance could be worse with external
drivers

© S e m i o c a s t

Erlang technologies we love hate

Erlang technologies we love

© S e m i o c a s t

Erlang technologies we love hate

dialyzer
- part of our compilation cycle

- found many bugs, typically inconsistencies between
callers and callees

- starting with -spec when defining exported funs

We wish it would be fixed/improved:

- horribly slow

- sometimes blind

- hard to understand

- fails on code_change code

- useless warnings that cannot be disabled

© S e m i o c a s t

Erlang technologies we love hate

snmp
- makes it really easy to integrate erlang nodes within a

monitoring solution (we use nagios and munin)

HiPE
OTP installed with --enable-native-lib and all our code
compiled with +native

- helps with CPU-bound work (including dialyzer…)

- most patches we submitted were HiPE-related

We are also grateful to the authors of:
erlsom, mochiweb, nitrogen, zotonic…

© S e m i o c a s t

Thank you !
paul@semiocast.com

